Kurva Produksi Telur di Awal Masa Peneluran pada Puyuh yang diberi Ransum dengan Kandungan Protein Berbeda

Adi Ratriyanto, Brian Fikri Hidayat, Nuzul Widyas, Sigit Prastowo

Abstract


Penelitian bertujuan untuk mengkaji pola produksi dan aplikasi model regresi logistik produksi telur puyuh yang diberi ransum dengan level protein berbeda. Sebanyak 225 ekor puyuh didistribusikan dalam 3 perlakuan dan 5 ulangan; jumlah puyuh masing-masing ulangan 15 ekor. Perlakuan yang diberikan adalah level protein kasar (PK) dalam ransum sebesar 16,5% (P1), 18% (P2) dan 19,5% (P3). Data produksi telur diambil sejak awal peneluran pada masa adaptasi dan selama dua periode produksi telur (2×28 hari) pada masa perlakuan. Data dianalisis menggunakan program R. Perlakuan P2 dan P3 menghasilkan produksi telur yang lebih tinggi daripada P1 (P<0.05). Model logistik produksi telur puyuh menunjukkan bahwa puncak produksi tertinggi dicapai oleh P3 sedangkan rentang dan laju produksi terbesar dicapai P1. Data aktual produksi telur memiliki kesesuaian (fitness) yang tinggi (R2=0,92–0,97) dengan model logistik. Berdasarkan hasil tersebut, disimpulkan bahwa semakin tinggi protein kasar menghasilkan produksi telur yang tinggi. Model regresi logistik dapat digunakan untuk menganalisis pengaruh perlakuan biologis terhadap produksi telur puyuh serta memiliki kesesuaian yang tinggi dengan data aktual.


Keywords


kesesuaian, model matematika, produksi telur puyuh, protein kasar

Full Text:

PDF

References


Anang, A., Indrijani, H., & Sujana, E. (2017). Mathematical model of growth of two purelines of Padjadjaran female quail aged 0 to 6 weeks. Journal of the Indonesian Tropical Animal Agriculture, 42(2), 66. https://doi.org/10.14710/jitaa.42.2.66-71

Anang, A., Indrijani, H., & Sundara, T. A. (2007). Model Matematika Kurva Produksi Telur Ayam Broiler Breeder Parent Stock. Jurnal Ilmu Ternak, 7(1), 6–11.

Azghadi, M. A., Kermanshahi, H., & Golian, A. (2014). The effect of dietary energy and protein levels on growth performance and antibody responses of offspring of laying Japanese quails. Iranian Journal of Applied Animal Science, 4(2007), 185–190.

Dairo, F. A. S., Adesehinwa, A. O. K., Oluwasola, T. A., & Oluyemi, J. A. (2010). High and low dietary energy and protein levels for broiler chickens. African Journal of Agricultural Research, 5(15), 2030–2038. https://doi.org/10.5897/AJAR10.254

Ding, Y., Bu, X., Zhang, N., Li, L., & Zou, X. (2016). Effects of metabolizable energy and crude protein levels on laying performance, egg quality and serum biochemical indices of Fengda-1 layers. Animal Nutrition, 2(2), 93–98. https://doi.org/10.1016/j.aninu.2016.03.006

Garcia, E., Mendes, A., Pizzolante, C., Saldanha, E., Moreira, J., Mori, C., & Pavan, A. (2005). Protein, methionine+cystine and lysine levels for Japanese quails during the production phase. Revista Brasileira de Ciência Avícola, 7(1), 11–18. https://doi.org/10.1590/S1516-635X2005000100002

Gous, R. M., & Nonis, M. K. (2010). Modelling egg production and nutrient responses in broiler breeder hens. The Journal of Agricultural Science, 148(3), 287–301. https://doi.org/10.1017/S0021859610000183

Johnston, S. A., & Gous, R. M. (2007). A mechanistic, stochastic, population model of egg production. British Poultry Science, 48(2), 224–232. https://doi.org/10.1080/00071660701227493

Kaye, J., Luka, S. J., Akpa, G. N., & Adeyinka, I. A. (2017). Egg production pattern of Japanese quail (Coturnix coturnix japonica ) in Northern Guinea Savannah Zone of Nigeria. International Journal of Innovative Research and Advanced Studies, 4(1), 93–97.

Li, Y. X., Qang, Y. Q., Pang, Y. Z., Li, J. X., Xie, X. H., Guo, T. J., & Li, W. Q. (2011). The effect of crude protein level in diets on laying performance, nutrient digestibility of yelow quails. International Journal of P, 10(2), 110–112.

Mazzuco, H., Avila, V. S., Coldebella, A., Mores, R., Jaenisch, F. R. F., & Lopes, L. S. (2011). Comparison of the effect of different methods of molt: Production and welfare evaluation. Poultry Science, 90(12), 2913–2920. https://doi.org/10.3382/ps.2011-01670

Narinc, D., Karaman, E., Aksoy, T., & Firat, M. Z. (2013). Investigation of nonlinear models to describe long-term egg production in Japanese quail. Poultry Science, 92, 1676–1682. https://doi.org/10.3382/ps.2012-02511

Narinc, D., Uckardes, F., & Aslan, E. (2014). Egg production curve analyses in poultry science. World’s Poultry Science Journal, 70(4), 817–828. https://doi.org/10.1017/s0043933914000877

Narushin, V. G., & Takma, C. (2003). Sigmoid model for the evaluation of growth and production curves in laying hens. Biosystems Engineering, 84(3), 343–348. https://doi.org/10.1016/S1537-5110(02)00286-6

Nutrition Research Council. (1994). Nutrient Requirements of Poultry (9th ed.). Washington DC: National Academic Press. https://doi.org/10.17226/2114

Ott, R. L., Longnecker, M., Taylor, M., & Payumo, M. A. (2010). An Introduction to Statistical Methods and Data Analysis Sixth Edition. USA: Brooks/Cole, Cengage Learning.

Otwinowska-Mindur, A., Gumułka, M., & Kania-Gierdziewicz, J. (2016). Mathematical Models for Egg Production in Broiler Breeder Hens. Annals of Animal Science, 16(4), 1185–1198. https://doi.org/10.1515/aoas-2016-0037

Pavlidis, H. O., Price, S. E., & Siegel, P. B. (2002). Associations between egg production and clutch length in four selected lines of chickens. Journal of Applied Poultry Research, 11(3), 304–307. https://doi.org/10.1093/japr/11.3.304

Piao, J., Okamoto, S., Kobayashi, S., Wada, Y., & Maeda, Y. (2004). Purebred and crossbred performances from a Japanese quail line with very small body size. Animal Research, EDP Sciences Res, 53(53), 145–153. https://doi.org/10.1051/animres:2004007

R Core Team. (2019). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Ratriyanto, A. (2018). Pola produksi telur puyuh yang diberi ransum disuplementasi betain dan metionin. Caraka Tani: Journal of Sustainable Agriculture, 2570(1), 1–7. https://doi.org/http://dx.doi.org/10.20961/carakatani.v33i1.19354

Ratriyanto, A., Indreswari, R., & Nuhriawangsa, A. M. P. (2017). Effects of dietary protein level and betaine supplementation on nutrient digestibility and performance of Japanese quails. Revista Brasileira de Ciencia Avicola, 19(3), 445–454. https://doi.org/10.1590/1806-9061-2016-0442

Ratriyanto, A., & Mosenthin, R. (2018). Osmoregulatory function of betaine in alleviating heat stress in poultry. Journal of Animal Physiology and Animal Nutrition, 102, 1634–1650.

Savegnago, R. P., Cruz, V. a. R., Ramos, S. B., Caetano, S. L., Schmidt, G. S., Ledur, M. C., … Munari, D. P. (2012). Egg production curve fitting using nonlinear models for selected and nonselected lines of White Leghorn hens. Poultry Science, 91(11), 2977–2987. https://doi.org/10.3382/ps.2012-02277

Savegnago, R. P., Nunes, B. N., Caetano, S. L., Ferraudo, A. S., Schmidt, G. S., Ledur, M. C., & Munari, D. P. (2011). Comparison of logistic and neural network models to fit to the egg production curve of White Leghorn hens. Poultry Science, 90(3), 705–711. https://doi.org/10.3382/ps.2010-00723

Shanaway, M. M. (1994). Quail Production Systems: A Review. Rome: FAO.




DOI: https://doi.org/10.24198/jit.v19i1.22171

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

JURNAL ILMU TERNAK INDEXED BY:

width= width=width=width=width=width=width=