Fenotiping Digital Tanaman: Tinjauan Terhadap Teknologi dan Algoritma Pengolahan Citra

Gian Anantrio Putra, Dwi Cahyani, Raizummi Fil'aini, David Septian Sumanto Marpaung

Abstrak


Peningkatan konsumsi dunia akan pangan dan energi dalam skala global yang belakangan menjadi isu yang sering muncul akibat pertumbuhan jumlah penduduk dunia yang berkembang dengan pesat, terdapat sebuah kebutuhan mendasar akan adanya tanaman pangan yang memiliki produktivitas tinggi yang dapat beradaptasi pada perubahan iklim di masa depan. Untuk mewujudkan hal tersebut, dalam proses pengembangan kultivar-kultivar baru dilakukan sebuah proses fenotiping yang dimana hasil fenotiping tersebut akan dikaitkan dengan proses genotiping yang dilakukan pada proses sebelumnya. Perkembangan teknologi informasi tidak lepas dari proses penting ini, teknologi akuisisi data berbasiskan citra digital untuk proses fenotiping otomatis mengalami perkembangan kemajuan yang penting beberapa tahun terakhir. Pada tinjauan kepustakaan ini kami mendiskusikan perkembangan infrastruktur informatika pada bidang fenotiping tanaman otomatis yang meliputi teknik pengolahan citra dan prinsip-prinsip analisis data yang terkait pada proses tersebut, termasuk di dalamnya manajemen data yang berkaitan dengan fenotiping digital tanaman dimulai pada proses penyimpanan data dalam jumlah yang masiv hingga algoritma-algoritma kecerdasan buatan yang terlibat dalam mengolah data-data tersebut.


Teks Lengkap:

PDF

Referensi


Ayliffe, M. A., and Lagudah, E. S. 2004. Molecular genetics of disease resistance in cereals. Ann. Bot. 94, 765–773. doi: 10.1093/aob/mch207

Araus, J.L., Cairns, J.E. 2014. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19, 52–61.

Barnes, C., Balzter, H., Barrett, K. et al. 2017. Individual tree crown delineation from airborne laser scanning for diseased larch forest stands. Remote Sens, 9, 231.

Biskup, B., Scharr, H., Schurr, U. et al. 2007. A stereo imaging system for measuring structural parameters of plant canopies. Plant Cell Environ, 30, 1299–308.

Brown, M.Z., Burschka, D., Hager, G.D. 2003. Advances in computational stereo. IEEE Trans Pattern Anal Mach Intell, 25, 993–1008.

Chapple, C.C., Vogt, T., Ellis, B.E. et al. 1992. An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell, 4, 1413, 24.

Chen, J.M., Cihlar, J. 1996. Retrieving Leaf Area Index of boreal conifer forests using Landsat TM images. Remote Sens Environ, 55, 155, 62.

Chen, D., Neumann, K., Friedel, S., Kilian, B., Chen, M., Altmann, T., et al. 2014. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell 26, 4636–4655. doi: 10.1105/tpc.114.129601.

Comar, A., Burger, P., de Solan, B. et al. 2012. A semi-automatic system for high throughput phenotyping wheat cultivars in field conditions: description and first results. Funct Plant Biol, 39, 914.

Cubert, S. 2017. 137 - ButterflEYE NIR - Cubert-GmbH. Available at: http://cubert-gmbh.com/product/s-137-butterfleye-nir/.

da Silva, Marques J. 2016 Monitoring photosynthesis by in vivo chlorophyll fluorescence: application to high-throughput plant phenotyping. Appl Photosynth-New Prog, Intech, 3–22.

Deery, D., Jimenez-Berni, J., Jones, H. et al. 2014. Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy,4,349–79.

Dozier, J., Painter, T.H. 2004. Multispectral and hyperspectral remote sensing of alpine snow properties. Annu Rev Earth Planet Sci, 32, 465, 94.

Ferrato, L.J. 2012. Comparing hyperspectral and multispectral imagery for land classification of the lower donriver, Toronto. MsC Thesis. Ryerson University. Available at: http://www.geography.ryerson.ca/wayne/MSA/LisaJenFerratoMRP2012.pdf

Finkel, E. 2009. With ‘Phenomics’. Plant scientists hope to shift breeding into overdrive. Science 325, 380–381.

Fiorani, F., Rascher, U., Jahnke, S. et al. 2012. Imaging plants dynamics in heterogenic environments. Curr Opin Biotechnol, 23, 227, 35.

Fiorani, F., and Schurr, U. 2013. Future Scenarios for Plant Phenotyping. Ann. Rev. Plant Biol. 64, 267–291. doi: 10.1146/annurev-arplant-050312-120137

Furbank, R. T. 2009. Plant phenomics: from gene to form and function. Funct. Plant Biol. 36, 5–6. doi: 10.1071/FPv36n11_FO

Furbank, R. T., and Tester, M. 2011. Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16, 635–644. doi: 10.1016/j.tplants.2011.09.005

Furbank, R. T., Von Caemmerer, S., Sheehy, J., and Edwards, G. 2009. C-4 rice: a challenge for plant phenomics. Funct. Plant Biol. 36, 845–856. doi: 10.1071/FP09185.

Guijarro, M., Riomoros, I., Pajares, G. et al. 2015. Discrete wavelets transform for improving greenness image segmentation in agricultural images. Comput Electron Agric, 118, 396–407.

Guilioni, L., Jones, H.G., Leinonen, I. et al. 2008. On the relationships between stomatal resistance and leaf temperatures in thermography. Agric For Meteorol, 148, 1908, 12.

Gwenzi, D., Helmer, E., Zhu, X. et al. 2017. Predictions of tropical forest biomass and biomass growth based on stand height or canopy area are improved by Landsat-scale phenology across Puerto Rico and the U.S. Virgin Islands. Remote Sens, 9, 123.

Huang, R., Jiang, L., Zheng, J., Wang, T., Wang, H., Huang, Y., et al. 2013. Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci. 18, 218–226. doi: 10.1016/j.tplants.2012.11.001.

Kellndorfer, J.M., Walker, W.S., LaPoint, E. et al. 2010. Statistical fusion of lidar, InSAR, and optical remote sensing data for forest stand height characterization: a regional-scale method based on LVIS, SRTM, Landsat ETM+, and ancillary data sets. J Geophys Res Biogeosciences, 115.

Kise, M., Park, B., Heitschmidt, G.W. et al. 2010. Multispectral imaging system with interchangeable filter design. Comput Electron Agric, 72, 61, 8.

Klose, R., Penlington, J. 2009. Usability study of 3D time-of-flight cameras for automatic plant phenotyping. Bornimer. Available at: https://www.hs-osnabrueck.de/fileadmin/HSOS/Homepages/COALA/Veroeffentlichungen/2009-CBA-3DToF.pdf.

Kranner, I., Kastberger, G., Hartbauer, M. et al. 2010. Noninvasive diagnosis of seed viability using infrared thermography. Proc Natl Acad Sci U S A, 107, 3912, 7.

Krizhevsky, A., Sutskever, I., and Hinton, G.E. 2012. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105.

Lee, K.S., Cohen, W.B., Kennedy, R.E. et al. 2004. Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sens Environ, 91, 508, 20.

Lee, U.S., Chang, S.Y., Putra, G.A., Kim, H.S., Kim, D.H. 2018. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis. PloS one, 13, 4, e0196615.

Li, L., Zhang, Q., and Huang, D. 2014. A review of imaging techniques for plant phenotyping. Sensors (Basel) 14, 20078–20111. doi: 10.3390/s141120078

Lin, Y. 2015. LiDAR: An important tool for next-generation phenotyping technology of high potential for plant phenomics? Comput Electron Agric, 119, 61–73.

Liu J-C, Lin T-M. 2015. Location and image-based plant recognition and recording system. J Inform Hiding and Multimedia Signal Processing, 6(5), 898–910. Available at: http://www.jihmsp.org/∼jihmsp/2015/vol6/JIH-MSP-2015-05-007.pdf

Lepage, G., Bogaerts, J., Meynants, G. 2009. Time-delay-integration architectures in CMOS image sensors. IEEE Trans Electron Devices, 56, 2524–33.

Long, J., Shelhamer, E., and Darrell, T. 2015. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3431–3440.

Mallona, I., Egea-Cortines, M., Weiss, J. 2011. Conserved and divergent rhythms of CAM-related and core clock gene expression in the cactus Opuntia ficus-indica. Plant Physiol, 156, 1978–89.

Minervini, M., Abdelsamea, M.M., Tsaftaris, S.A. 2014. Image-based plant phenotyping with incremental learning and active contours. Ecol Inform, 23, 35–48.

Mohanty, S.P., Hughes, D., Salathé, M. 2016. Using deep learning for image-based plant disease detection. 1–7.

Mouille, G., Robin, S., Lecomte, M. et al. 2003. Classification and identification of Arabidopsis cell wall mutants using Fourier Transform InfraRed (FT-IR) microspectroscopy. Plant J, 35, 393–404.

Navarro, P.J., Pérez, F., Weiss, J. et al. 2016. Machine learning and computer vision system for phenotype data acquisition and analysis in plants. Sensors (Switzerland), 16, 641.

Nguyen, T.T., Slaughter, D.C., Max, N. et al. 2015. Structured light-based 3D reconstruction system for plants. Sensors (Switzerland), 15, 18587–612.

Nguyen, T.T., Slaughter, D.C., Maloof, J.N. et al. 2016. Plant phenotyping using multi-view stereo vision with structured lights. In: Valasek J, Thomasson JA, eds. International Society for Optics and Photonics.

Baltimore, Maryland, USA: SPIE Commercial + Scientific Sensing and Imaging, 986608. doi: 10.1117/12.2229513.

Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern, 9, 62–6.

Padhi, J., Misra, R.K., Payero, J.O. 2012. Estimation of soil water deficit in an irrigated cotton field with infrared thermography. F Crop Res, 126, 45–55.

Pallotta, M., Schnurbusch, T., Hayes, J., Hay, A., Baumann, U., Paull, J., et al. 2014. Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars. Nature 51, 88–91. doi: 10.1038/nature13538.

Pape, J-M., Klukas, C. 2015. Utilizing machine learning approaches to improve the prediction of leaf counts and individual leaf segmentation of rosette plant images. In: Computer Vision Problems in Plant Phenotyping (CVPPP 2015). British Machine Vision Association, 1–12. Available at:http://www.bmva.org/bmvc/2015/cvppp/papers/paper003/index.html.

Patil, S., Soma, S., Nandyal, S. 2013. Identification of growth rate of plant based on leaf features using digital image processing techniques. Int J Emerg Technol Adv Eng, 3.

Pérez-Bueno, M.L., Pineda, M., Cabeza, F.M. et al. 2016. Multicolor fluorescence imaging as a candidate for disease detection in plant phenotyping. Front Plant Sci, 7, 1790.

Perez-Sans, F., Navarro, P.J., Egea-Cortinez, M. 2017. Plant phenomics: an overview of image acquisition technologies and image data analysis algorithms. GigaScience, 6, 1-18. doi: 10.1093/gigascience/gix092

Pound, M.P., Burgess, A.J., Wilson, M.H., et al. 2016. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. BioRxiv 2016;53033

Rahaman, M.M., Chen, D., Gillani, Z., Klukas, C., and Chen. M. 2015. Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front. Plant Sci. 6:619. doi: 10.3389/fpls.2015.00619

Schwartz, S. 2015. An overview of 3D plant phenotyping methods. Phenospex Smart Plant Anal. Available at: https://phenospex.com/blog/an-overview-of-3d-plant-phenotyping-methods/#ref

Sheehan, H., Moser, M., Klahre, U., et al. 2015. MYB-FL controls gain and loss of floral UV absorbance, a key trait affecting pollinator preference and reproductive isolation. Nat Genet. Available at: http://www.nature.com/doifinder/10.1038/ng.3462.

Simko, I., Jimenez-Berni, J.A., Sirault, X.R.R. 2016. Phenomic approaches and tools for phytopathologists. Phytopathology. doi: 10.1094/PHYTO-02-16-0082-RVW.

Singh, V., Misra, A.K. 2017. Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf Process Agric, 4, 41–9.

Solem, J.E. 2012. Programming computer vision with python. In: Andy Oram, Mike Hendrikosn, eds. Programming Computer Vision with Python. 1st ed. Sebastopol, CA: O’Reilly Media, 264. Available at: http://programmingcomputervision.com/.

Song, Y., Glasbey, C.A., van der Heijden, G.W.A.M. et al. 2011. Combining Stereo and Time-of-Flight Images with Application to Automatic Plant Phenotyping. Berlin: Springer, 467, 78.

Sticklen, M. B. 2007. Feedstock crop genetic engineering for alcohol fuels. Crop Sci. 47, 2238–2248. doi: 10.2135/cropsci2007.04.0212

Tardieu, F., Cabrera-Bosquet, L., Pridmore, T., Bennett, M. 2017. Plant Phenomics, From Sensors to Knowledge. Current Biology 27, R770–R783

Tester, M., and Langridge, P. 2010. Breeding technologies to increase crop production in a changing world. Science 327, 818–822. doi: 10.1126/science.1183700

Valluru, R., Reynolds, M. P., and Salse, J. 2014. Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. Theor. Appl. Genet. 127, 1463–1489. doi: 10.1007/s00122-014-2332-9.

Van Der Heijden, G., Song, Y., Horgan, G. et al. 2012. SPICY: towards automated phenotyping of large pepper plants in the greenhouse. Funct Plant Biol, 39, 870–7.

Vincent, L., Vincent, L., Soille, P. 1991. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell, 13, 583–98.

Vukadinovic, D., Polder, G. 2015. Watershed and supervised classification based fully automated method for separate leaf segmentation. The Netherland Congress on Computer Vision, 1–2. Available at: http://edepot.wur.nl/385470.

White, J., Andrade-Sanchez, P., Gore, M. et al. 2012. Field-based phenomics for plant genetics research. F Crop, 133, 101-12.

Xing, Y., and Zhang, Q. (2010). Genetic and molecular bases of rice yield. Ann. Rev. Plant Biol. 64, 421–442. doi:10.1146/annurevarplant-042809-112209

Yu, C., Nie, K., Xu, J. et al. 2016. A low power digital accumulation technique for digital-domain CMOS TDI image sensor. Sensors, 16, 1572.

Zhao, C., Zhang, Y., Du, J., Guo, X., Wen, W., Gu, S., Wang, J. and Fan, J. 2019. Crop Phenomics: Current Status and Perspectives. Front. Plant Sci. 10, 714.

Zhao, Z.Q., Ma, L.H., Cheung, Y.M., et al. 2015. ApLeaf: an efficient android-based plant leaf identification system. Neurocomputing, 151, 1112–9


Refbacks

  • Saat ini tidak ada refbacks.