Oil bodies sizes variation analyses of rapeseed in two locations as a novel trait for genetic engineering

Rita Andini, Muhammad Ikhsan Sulaiman, Murna Muzaifa, Yulia Dewi Fazlina, Christian Moellers

Abstract


 

Abstrak

Tanaman raps (Brassica napus L.) adalah tanaman penghasil minyak utama di negara dengan iklim dingin seperti di Jerman. Minyak raps (Brassica napus L.) digunakan untuk bahan pangan, biodiesel, dan sebagai pakan ternak. Kandungan minyaknya bisa mencapai 33 – 48%. Tanaman  minyak seperti kedelai (Glycine max), raps (Brassica napus L.), bunga matahari (Helianthus annuus) pada umumnya menyimpan kandungan minyaknya dalam suatu organela penyimpanan dikenal dengan ‘oil body’ yang mempunyai  diameter antara 0,6 hingga 2,0 µm, tergantung dari spesies tanaman. Peningkatan kandungan minyak merupakan salah satu target pemuliaan di banyak tanaman minyak, termasuk di raps. Tulisan ini menceritakan tentang isolasi ‘oil body’ dari tanaman raps menggunakan metode sentrifugasi, yang dapat mengurangi efek negatif dari n-heksan sebagai zat ekstraktor yang lazim digunakan dalam proses penyulingan minyak. Sebanyak 200 mg benih B. napus L. kultivar ‘Maplus’ digunakan sebagai bahan dalam penelitian ini. Benih berasal dari populasi Double Haploid (DH) yang ditanam di dua lingkungan yang berbeda secara signifikan di Cina dan Jerman. Rata-rata kandungan minyak dari dua populasi juga berbeda, yaitu 49,18% di Cina, dan 56,94% di Jerman. Dalam penelitian ini, ‘oil body’ diisolasi melalui metode sentrifugasi dan distribusinya diamati di bawah mikroskop cahaya. Berdasarkan pengukuran partikel ‘Coulter Counter’, diameter ‘oil body’ pada tanaman raps bervariasi  antara 1,03 - 1,07 µm (rata-rata= 1,05 µm) pada genotipe dari Jerman, dan 0,98 - 1,02 µm (rata-rata= 1,00 µm) pada genotipe Cina. Selain itu, studi ini mengkonfirmasi korelasi positif dan sangat signifikan antara ukuran ‘oil body’ dengan kandungan minyak di tanaman raps.

 

Kata Kunci: Coulter Counter, Deutschland, sentrifugasi, tanaman minyak


Abstract

Rapeseed (Brassica napus L.) containing oil content from 33 up to 48% (on 8.5% moisture basis) is the major source of oil plant in many temperate regions, e.g. in Germany. It is mainly applied for cooking, bio-diesels; and animal fodder. Seed plants (soybeen, rapeseed, sunflower) store oil in a storage organelle called oil body whose size varies from 0.6 – 2.0 µm, depending on the plant species. Increasing the oil content is one of the breeding targets in many of oil plants, including in rapeseed. Due to increasing awareness of the environment and the hazardous impact of solvent extraction agents; such as n-hexane (C6H14) on human health, their application in the oil extraction process is slowly being reduced. A more friendly oil extraction method via centrifugation was introduced over the past decade as well as for biotechnological application. Each 200 mg of B. napus L. cv. ‘Maplus’ seeds were applied as material in this study. Seeds originated from the Double Haploid (DH) population grown in two significantly distinct environments in China and Germany. The average of oil content from two populations was also different, namely 49,18% in China, and 56,94% in Germany. In this study, oil bodies were isolated via the centrifugation method and their distribution was observed under the light microscope. Based on the Coulter Counter measurement, the diameter sizes were ranging from  1,03 - 1,07 µm (mean= 1,05 µm) and 0,98 - 1,02 µm (mean= 1,00 µm) in German and Chinese genotypes, respectively. This study confirms a positive and very highly significant correlation between the size of oil bodies and oil content in rapeseed.

Keywords: centrifuge, Coulter Counter, Deutschland, oil plant


Full Text:

PDF

References


Chuang, R. L. C., J. C. F. Chen, J. Chu, and J. T. C. Tzen, J.T.C. 1996. Characterization of seed oil bodies and their surface oleosin isoforms from rice embyros. J. Biochem. (120): 74-81.

Cunxu, W., F. Qin, Chen, A. Li, Y. Zhang, W. Zhou, and Y. Wang. 2009. Oil body observation in seeds of Brassica napus L.. Chinese Journal of Oil Crop Sciences. 31 (4): 445-448.

Frandsen, G. I., J. Mundy, and J. T. C. Tzen. 2001. Oil bodies and their associated proteins, oleosin and caleosin. Physiologia Plantarium (112): 301-307.

Graham, M. D. 2003. The Coulter Principle: Foundation of an Industry. JALA: Journal of the Association for Laboratory Automation, 8(6):72-81

Huang, A. H. C. 1996. Oleosins and oil bodies in seeds and other organs. Plant Physiol. (110): 1055-1061.

Jiang, P. L. and J. Tzen. 2010. Caleosin serves as the major structural protein as efficient as oleosin on the surface seed oil bodies. Plant Signaling & Behaviour. 5 (4): 447-449.

Khan T. N. and J. S. Croser. 2004. PEA Overview. Encyclopedia of Grain Science. Pages 418-427

Kumar, S. and W. F. Thompson. 2010. Plant Genome Engineering Using Zinc Nucleases in Molecular Techniques in Crop Improvement, Jain, S.M. and Brar, D.S. (eds.) ,doi: 10.1007/978-90-481-2967-6_24, Springer Science and Business Media B.V., pp. 579-590

Millichip, M., A. S. Tatham, F. Jackson, G. Griffiths, P. R. Shewry, and A. K. Stobart. 1996. Purification and characterization of oil-bodies (oleosomes) and oil-body boundary proteins (oleosins) from the developing cotyledonds of sunflower (Helianthus annuus L.). Biochem. J. (314): 333-337.

Peng, C. C., I. Lin, C. Lin, and J. T. C. Tzen. 2003. Size and stability of reconstituted sesame oil bodies. Biotechnol. Prog. (19): 16233-1626.

Ren, J., P. Wu, B. Trampe, X. Tian, T. Lubberstedt, and S. Chen. 2017. Novel technologies in dhoubled haploid line development. Plant Biotechnology Journal 15, 1361-1370. https://onlinelibrary.wiley.com/doi/epdf/10.1111/pbi.12805

Spasibionek, S., K. Mikolajczyk, H. Ćwiek-Kupczyńska, T. Piętka, K. Krótka, et al. 2020. Marker assisted selection of new high oleic and low linolenic winter oilseed rape (Brassica napus L.) inbred lines revealing good agricultural value. PLOS One 15 (6):e0233959. https://doi.org/10.1371/journal.pone.0233959

Strohm, K. 2010. Description of the typical farm DE360OW, Germany. http://www.agribenchmark.org/cash-crop/sector-country-farm-information/country-profiles/germany.html; accessed 27 Februari 2021

Ting, J. T. L., K. Lee, C. Ratnayake, K. A. Platt, R. A. Balsamo, and A. H. C. Huang. 1996. Oleosin genes in maize kernels having diverse oil contents are constitutively expressed independent of oil contents. Planta (199): 158-165.

Tzen, J. T. C. and A. H. C. Huang. 1992. Surface structure and properties of plant seed oil bodies. The Journal of Cell Biology (117:2): 327-335.

Wäsche, A. 2001. Simultäne Öl-und Proteingewinnung bei Raps. Genehmigte Dissertation von der Fakultät III- Prozesswissenschaften der Technischen Universität Berlin. Berlin, Germany.

Zhao, J. 2002. QTLs for oil content and their relationships to other agronomic traits in an European x Chinese oilseed rape population. Online dissertation at the University of Göttingen: pp. 28.




DOI: https://doi.org/10.24198/kultivasi.v20i2.32595

Refbacks

  • There are currently no refbacks.




Jurnal Kultivasi Indexed by:

       width=    

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View Jurnal Kultivasi Stat