Evaluasi kualitas nutrisi microgreen bayam merah dan hijau menggunakan cahaya buatan

Aida Fadlilah Rahmani, Syariful Mubarok, Mochammad Arief Soleh, Boy Macklin Pareira Prawiranegara

Abstract


Abstrak

Permasalahan yang muncul untuk mengusahakan pertanian perkotaan adalah semakin sulitnya menemukan lahan pertanian yang dimiliki masyarakat dan kesempatan waktu yang minim untuk budidaya tanaman. Permasalahan tersebut dapat diatasi salah satunya dengan menggunakan sistem hidroponik ditambah pencahayaan buatan untuk kebutuhan pertumbuhan tanaman. Penanaman microgreen dalam ruangan merupakan salah satu cara untuk memudahkan masyarakat dalam berbudidaya tanaman. Percobaan ini bertujuan untuk mempelajari jenis warna cahaya buatan terhadap kualitas nutrisi microgreen bayam merah dan bayam hijau. Penelitian dilaksanakan di Laboratorium Analisis Tanaman dan Pasca Panen Hortikultura, Fakultas Pertanian, Universitas Padjadjaran. Rancangan percobaan yang digunakan yaitu Rancangan Acak Kelompok dengan dua faktor perlakuan, yaitu warna cahaya yang terdiri dari 5 level dan jenis tanaman yang terdiri dari 2 level. Faktor warna cahaya terdiri dari kontrol-cahaya matahari, kontrol artifisial-neon, lampu light emitting diode (LED) full spectrum, LED warna biru, dan LED warna merah. Faktor varietas tanaman yaitu microgreen bayam merah dan bayam hijau. Hasil penelitian menunjukkan bahwa terjadi pengaruh interaksi antara warna cahaya dan varietas tanaman terhadap kualitas nutrisi microgreen yaitu kandungan fenol, flavonoid, dan aktivitas penangkap radikal diphenyl picril hydrazil hydrate (DPPH). Respon masing-masing varietas menunjukkan kualitas nutrisi yang berbeda. Perlakuan pencahayaan LED warna biru dan full spectrum memberikan kualitas hasil terbaik pada microgreen bayam merah, sedangkan perlakuan pencahayaan LED warna merah dan biru memberikan kualitas hasil terbaik pada microgreen bayam hijau.

Kata kunci: Bayam LED Microgreen  ∙ Warna cahaya

 

Abstract. Agricultural problems in urban area are the obstacle to provide proper agricultural land owned by the local community and  time limitation for plant cultivation activities. This problem can be overcome by using hydroponic system equipped by artificial lighting for plant growth needs. The concept of microgreen culture in indoor condition may ease people to have plant cultivation activities.  The experiment was carried out to study the effect of different types of artificial light color on the nutritional quality of red and green spinach microgreen. The experiment was conducted at the Laboratory of Plant Analysis and Post-Harvest Horticulture, Faculty of Agriculture, Universitas Padjadjaran. The experimental design was randomized block design with two factors: artificial light color consisting of five levels and plant species consisting of two levels. The light color factor consisted of sunlight-control, artificial neon tube lamp-control, full spectrum light emitting diodes (LEDs), blue LEDs, and red LEDs. Plant varieties were red and green spinach. The results showed that there was an interaction between light color and plant varieties on nutritional quality of microgreen, such as phenol, flavonoid content, and diphenyl picril hydrazil hydrate (DPPH) radical scavenging activity. The responses of red and green spinach showed different nutritional quality. Blue and full spectrum LED lighting gave the best nutritional quality to red spinach microgreen, while red and blue LED lighting treatments gave the best results to green spinach microgreen. 

Keywords: Spinach LED Microgreen Light colors


Keywords


Bayam; LED; Microgreen; Warna cahaya

References


Akhda, D. K. 2009. Pengaruh dosis dan waktu aplikasi kompos Azolla sp. terhadap pertumbuhan tanaman bayam merah (Althemathera amoena Voss). Agrivita, 7(4), 36–39.

Bhatt, P. and S. Sharma. 2018. Microgreens: A nutrient rich crop that can diversify food system. International Journal of Pure & Applied Bioscience, 6(2), 182–186. https://doi.org/10.18782/2320-7051.6251

Brazaityte, A., S. Sakalauskiene, A. Virsile, J. Jankauskiene, G. Samuoliene, R. Sirtautas, V. Vastakaite, J. Miliauskiene, P. Duchovskis, A. Noviekovas, and L. Dabasinskas. 2016. The effect of short-term red lighting on

Brassicaceae microgreens grown indoors. Acta Horticulturae, 1123, 177–183. https://doi.org/10.17660/ ActaHortic.2016.1123.25

Fitter, A.H. and R.K.M. Hay. 2002. Energy and Carbon. In Environmental Physiology of Plants. Third Edition (pp. 23–73). Academic Press. London.

Ghoora, M.D., A.C. Haldipur, and N. Srividya. 2020. Comparative evaluation of phytochemical content, antioxidant capacities and overall antioxidant potential of select culinary microgreens. Journal of Agriculture and Food Research, 2, 100046. https://doi.org/10.1016/j.jafr.2020.100046

Hasidah, Mukarlina, dan D.W. Rousdy. 2017. Kandungan pigmen klorofil, karotenoid dan antosianin daun caladium. Protobiont, 6(2), 29–37.

Hitz, T., M. Henke, S. Graeff-Honninger, S. Munz. 2019. Three-dimensional simulation of light spectrum and intensity within an LED growth chamber. Compt. and Electr. in Agric., 156: 540 - 548.

Jeon, Y.M., K.H. Son, S.M. Kim, and M.M. Oh. 2017. Growth and bioactive compounds as affected by irradiation with various spectrum of light-emitting diode lights in dropwort. Horticulture Environment and Biotechnology, 58(5), 467–478. https://doi.org/10.1007/s13580-017-0354-3

Lestari, A.P., A. Riduan, Elliyanti, dan D. Martino. 2020. Pengembangan Sistem Pertanian Hidroponik pada Lahan Sempit Komplek Perumahan. SAINTIFIK, 6(2), 136-142. https://doi.org/10.31605/saintifik.v6i2.259

Lindawati, Y., S. Triyono, dan D. Suhandy. 2015. Pengaruh lama penyinaran kombinasi lampu led dan lampu neon terhadap pertumbuhan dan hasil tanaman pakcoy (Brassica rapa L.) dengan hidroponik sistem sumbu (wick system). Jurnal Teknik Pertanian Lampung, 4(3), 191–200.

Lobiuc, A., V. Vasilache, O. Pintilie, T. Stoleru, M. Burducea, M. Oroian, and M.M. Zamfirache. 2017. Blue and red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic ocimum Basilicum L. Microgreens. Molecules, 22(12), 1–14. https://doi.org/10.3390/molecules22122111

Matysiak, B. and A. Kowalski. 2019. White, blue and red LED lighting on growth, morphology and accumulation of flavonoid compounds in leafy greens. Zemdirbyste, 106(3), 281–286. https://doi.org/10.13080/ z-a.2019.106.036

Naznin, M.T., M. Lefsrud, V. Gravel, and M.O.K. Azad. 2019. Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants, 8(4). https://doi.org/10.3390/plants8040093

Neldawati, Ratnawulan, dan Gusnedi. 2013. Analisis nilai absorbansi dalam penentuan kadar flavonoid untuk berbagai jenis daun tanaman obat. Pillar of Physics, 2, 76–83.

Nerdy, N. and K. Manurung. 2018. Spectrophotometric method for antioxidant activity test and total phenolic determination of red dragon fruit leaves and white dragon fruit leaves. Rasayang Journal of Chemistry, 11(3), 1183 – 1192.

Pinto, E., A.A. Almeida, A.A. Aguiar, and I.M.P.L.V.O. Ferreira. 2015. Comparison between the mineral profile and nitrate content of microgreens and mature lettuces. Journal of Food Composition and Analysis, 37(3), 38–43. https://doi.org/10.1016/j.jfca.2014.06.018

Pratiwi, A. 2017. Effect of nitrogen fertilizer to the flavonoid content of red amaranth (Amaranthus gangeticus L.). Pharmaciana, 7(1), 87. https://doi.org/10.12928/ pharmaciana.v7i1.4213

Ramos, R.T.M., I.C.F. Bezerra, M.R.A. Ferreira, and L.A.L. Soares. 2017. Spectrophotometric quantification of flavonoids in herbal material, crude extract, and fractions from leaves of Eugenia uniflora Linn. Pharmacognosy Research, 20(20), 1–8. https://doi.org/10.4103/pr.pr

Renna, M., M. Castellino, B. Leoni, V.M. Paradiso, and P. Santamaria. 2018. Microgreens production with low potassium content for patients with impaired kidney function. Nutrients, 10(6). https://doi.org/10.3390/nu10060675

Siddiqui, N., A. Rauf, A. Latif, and Z. Mahmood. 2017. Spectrophotometric determination of the total phenolic content, spectral and fluorescence study of the herbal Unani drug Gul-e-Zoofa (Nepeta bracteata Benth). Journal of Taibah University Medical Sciences, 12(4), 360–363. https://doi.org/ 10.1016/j.jtumed.2016.11.006

Utasi, L., I. Monostori, B. Végh, Z. Pék, and É. Darkó. 2019. Effects of light intensity and spectral composition. Acta Biologica Plantarum Agriensis, 18, 3–18.

Vaštakaitė, V., A. Viršilė, A. Brazaitytė, R. Sirtautas, and A. Novičkovas. 2015. The effect of blue light dosage on growth and antioxidant properties of microgreens. Scientific Works of The Institute of Horticulture, Lithuanian Research Centre For Agriculture and Forestry and Aleksandras Stulginskis University, 34, 25–36.

Xiao, Z., G. Lester, and Q. Wang. 2012. Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. Journal of Agricultural and Food Chemistry, 60, 7644–7651. https://doi.org/10.1021/jf300459b




DOI: https://doi.org/10.24198/kultivasi.v20i3.33365

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Kultivasi Indexed by:

       width=    

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View Jurnal Kultivasi Stat