Identification of extreme weather and their correlation on soybean production in Garut regency
Abstract
The phenomenon of extreme weather events as a result of the impact of climate change can cause threats to agricultural systems, including soybean (Glycine max L.). Soybean is the main source of vegetable protein, which is sensitive and vulnerable to climate change. Therefore, research has been carried out through the identification analysis of changes in extreme weather events and analyzed for their correlation with soybean crops in Garut Regency to determine the effect of extreme weather elements on soybean production. The method used in this research is descriptive quantitative, using trend analysis on extreme weather with data on extreme weather elements such as maximum rainfall, maximum temperature, minimum temperature, wet spell, dry spell, the largest wind speed, and trend analysis on soybean production and productivity. Data for the research were obtained from BUTPAAG LAPAN Garut Regency, Garut Regency Agriculture Office, and other related sources. The correlation analysis used is the Pearson correlation with a significance level of 5%. The results showed that climate change impacts extreme weather changes in the Garut Regency area, with increasing extreme weather trends. However, extreme weather changes were not significantly correlated with soybean production. In this research, only the maximum rainfall and the largest wind speed were significantly correlated with soybean productivity.
Keywords: correlation analysis, trend analysis, extreme weather, Garut regency, soybean production.
Keywords
Full Text:
PDFReferences
Aminah, Ala A, Musa Y, Padjung R, Kaimuddin. 2017. Strategy of soybean management (Glycine max L.) to cope with extreme climate using cropsyst model. Jurnal Agrivita, 39(3): 324–328. doi:https://doi.org/10.17503/agrivita.v39i3.1020
Araji HA, Wayayok A, Bavani AM, Amiri E, Abdullah AF, Daneshian J, Teh CBS. 2018. Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models. Agricultural Water Management, 205: 63-71.
Brittain C, Kremen C, Klein A-M. 2013. Biodiversity buffers pollination from changes in environmental conditions. Global Change Biology, 19(2): 540-547.
Carolina RA, Mulatsih S, Anggraeni L. 2016. Analisis volatilitas harga dan integrasi pasar kedelai indonesia dengan pasar kedelai dunia. Jurnal Agro Ekonomi, 34(1): 47–66. doi:https://doi.org/http://dx.doi.org/10.21082/jae.v34n1.2016.47-66
Cruz AM, Krausmann E. 2013. Vulnerability of the oil and gas sector to climate change and extreme weather events. Climatic Change, 121: 41–53.
Fodor N, Challinor A, Droutsas I, Ramirez-Villegas J, Zabel F, Koehler A-K, Foyer CH. Integrating Plant Science and Crop Modeling: Assessment of the Impact of Climate Change on Soybean and Maize Production. Plant and Cell Physiology, 58(11): 1833–1847.
Garut Agricultural Department. 2010. Pertanian di Kabupaten Garut. Disperta Garut. Garut.
Harsono B. 2008. Hukum Agraria Indonesia. Jakarta: Djambatan.
Kinasih M, Wirosoedarmo R, Widiatmono BR. 2015. Analisis ketersediaan air terhadap potensi budidaya kedelai (Glycine max (L) Merril) di daerah irigasi Siman. Jurnal Sumberdaya Alam Dan Lingkungan, 2(2): 57–62.
Kulig B, Klimek-Kopyra A. 2023. Sowing Date and Fertilization Level Are Effective Elements Increasing Soybean Productivity in Rainfall Deficit Conditions in Central Europe. Agriculture, 13, 115.
Ministry of National Development Planning of the Republic of Indonesia. 2016. Indonesia Adaptation Strategy: Improving Capacity to Adapt. Bappenas. Jakarta.
Perdinan, Santikayasa IP. 2006. Keragaman produktivitas komoditas kedelai pada berbagai skenario perubahan iklim menggunakan model iklim dan pertanian. Jurnal II Pertanian Indonesia, 11(2): 7–14.
Puspitasari P, Surendra O. 2016. Analisis Trend Perubahan Suhu Udara Minimum dan Maksimum Serta Curah Hujan Sebagai Akibat Perubahan Iklim di Provinsi. Balai Besar Meteorologi Klimatologi dan Geofisika Wilayah V Jayapura
Ruminta, Irwan AW, Nurmala T, Ramadayanty G. 2020. Analisis dampak perubahan iklim terhadap produksi kedelai dan pilihan adaptasi strategisnya pada lahan tadah hujan di Kabupaten Garut. Jurnal Kultivasi, 19(2): 1089–1097. doi:https://doi.org/10.24198/kultivasi.v19i2.27998
Stocker, Thomas F. 2001. The scientific basis. Contribution of Working Group 1 To The Third Assessment Report Of The Intergovermmental Panel Climate On Climate Change. Intergovermmental Panel on Climate Change.
Stott P. 2016. How climate change affects extreme weather events. Science, 352: 1517-1518.
Subagiyo A. 2021. Catatan Peringatan Hari Bumi, 22 April 2017: Dampak Perubahan Iklim Pada Kawasan Pesisir dan Laut. [diacu 2022 Februari 11]. Tersedia dari : http://arissubagiyo.lecture.ub.ac.id/
Surmaini E, Faqih DA. 2016. Kejadian iklim ekstrem dan dampaknya terhadap pertanian tanaman pangan di Indonesia. Jurnal Sumberdaya Lahan, 10(2): 115–128.
Yang J, Zhang Q, Lu G, Liu X, Wang Y, Wang D, Liu W, Yue P, Zhu B, Duan X. Climate Transition from Warm-Dry to Warm-Wet in Eastern Northwest China. Atmosphere 2021, 12, 548.
Yang W, Feng G, Read JJ, Ouyang Y, Han J, Li P. 2020. Impact of cover crop on corn–soybean productivity and soil water dynamics under different seasonal rainfall patterns. Agronomy Journal, 112(2): 1201-1215.
Zhang W, Qu Z, Zhang K, Mao W, Ma Y, Fan X. 2017. A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting. Energy Conversion and Management, 136: 439-451.
DOI: https://doi.org/10.24198/kultivasi.v22i2.43735
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Kultivasi Indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.