Effectiveness of modified nitrogen fertilizer on soil chemical properties and rice plant growth in the textile industrial area

Rija Sudirja, Santi Rosniawaty, Sri Muji Rahayu, Budy Frasetya Taufik Qurrohman

Abstract


The imbalance of nutrients and heavy metal contamination is a challenge in increasing plant growth surround the textile industry area. This study aimed to determine the effectiveness of the dosage of Biologically Agent N Organo Mineral Fertilizer (Biomix-N) as a fertilizer and an ameliorant in paddy soil contaminated with textile liquid waste. This study used a randomized block design of eight treatments with four replications. Parameters observed were soil chemical properties after application of Biomix-N (Na-ex, total N, EC, Cd, and pH), rice plant growth (plant height and tiller number), Cd concentration in the plant, and relative agronomic effectiveness (RAE). Data analysis used analysis of variance, Duncan's test at a 5% level, regression, and correlation analysis. The results showed that Biomix-N 500 kg ha-1 affected the value of EC and total N, while it did not affect Na-ex, Cd, pH and Cd uptake by the paddy plant. Biomix-N fertilization affects the height and number of tillers of rice plants at the age of 70 DAP. Biomix-N fertilization 500 kg ha-1 gave an RAE value of 126-176% compared to the control treatment. The total N content of the soil has a high value of coefficient determinant and correlation (R2= 0.76; R = 0.9) on the growth of rice plants. Applying Biomix-N 500 kg ha-1 equal to 300 kg ha-1 of urea was an effective dose for paddy soil surround the textile industrial area.

Keywords: Cadmium, nutrient balance, soil amendment


Keywords


Cadmium; nutrient balance; soil amendment

Full Text:

PDF

References


Afrad MSI, Monir MB, Haque ME, Barau AA, Haque MM. 2020. Impact of industrial effluent on water, soil and Rice production in Bangladesh: a case of Turag River Bank. J. Environ. Heal. Sci. Eng., 18(2): 825–834. doi: 10.1007/s40201-020-00506-8.

Aslam MA, Aziz I, Shah SH, Muhammad S, Latif M, et al. 2021. Effects of biochar and zeolite integrated with nitrogen on soil characteristics, yield and quality of maize (Zea mays L.). Pakistan J. Bot., 53(6): 2047–2057. doi: 10.30848/PJB2021-6(27).

Blaudez D, Botton B, Chalot M. 2000. Effects of heavy metals on nitrogen uptake by Paxillus involutus and mycorrhizal birch seedlings. FEMS Microbiol. Ecol., 33(1): 61–67. doi: 10.1016/S0168-6496(00)00044-1.

Dosa M, Grifasi N, Galletti C, Fino D, Piumetti M. 2022. Natural zeolite clinoptilolite application in wastewater treatment: Methylene blue, zinc and cadmium abatement tests and kinetic studies. Material, 15(8191): 1–18.

FAO. 2001. Codex Alimentarius Commission.

Gao L, Chang J, Chen R, Li H, Lu H, et al. 2016. Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice. Rice, 9(1). doi: 10.1186/s12284-016-0112-7.

Ghasemi M, Koupai JA, Heidarpour M. 2017. The effect of modified zeolite, activated carbon and peat with cationic surfactant and sodium hydroxide on removing anions from irrigation saline waters. Desalin. Water Treat., 92(1): 196–204. doi: 10.5004/dwt.2017.21523.

Ghorbani M, Amirahmadi E, Konvalina P, Moudrý J, Bárta J, et al. 2022. Comparative Influence of Biochar and Zeolite on Soil Hydrological Indices and Growth Characteristics of Corn (Zea mays L.). Water, 14(21). doi: 10.3390/w14213506.

Guo J, Xie S, Huang Y, Chen M, Wang G. 2021. Effects and mechanisms of Cd remediation with zeolite in brown rice (Oryza sativa). Ecotoxicol. Environ. Saf., 226: 112813. doi: 10.1016/j.ecoenv.2021.112813.

He ZL, Calvert DV, Alva AK, Li YC, Banks DJ. 2002. Clinoptilolite zeolite and cellulose amendments to reduce ammonia volatilization in a calcareous sandy soil. Plant Soil, 247(2): 253–260. doi: 10.1023/A:1021584300322.

Hossain MA, Rahman GKMM, Rahman MM, Molla AH, Rahman MM, et al. 2015. Impact of industrial effluent on growth and yield of rice (Oryza sativa L.) in silty clay loam soil. J. Environ. Sci., 30: 231–240. doi: https://doi.org/10.1016/j.jes.2014.10.008.

Imtiaz M, Rizwan MS, Mushtaq MA, Ashraf M, Shahzad SM, et al. 2016. Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: A review. J. Environ. Manage., 183: 521–529. doi: 10.1016/j.jenvman.2016.09.009.

Lakhdar A, Rabhi M, Ghnaya T, Montemurro F, Jedidi N, et al. 2009. Effectiveness of compost use in salt-affected soil. J. Hazard. Mater., 171(1–3): 29–37. doi: 10.1016/j.jhazmat.2009.05.132.

Mackay AD, Syers JK, Gregg PEH. 1984. Ability of chemical extraction procedures to assess the agronomic effectiveness of phosphate rock materials. New Zeal. J. Agric. Res., 27: 219–230. doi: 10.1080/00288233.1984.10430424.

Masykuri M, P. Setyono. 2019. Bioremediation using Bacillus subtilis and Saccharomyces cerevisiae. Journal of Soil Science and Agroclimatology, 16(2): 191–202. doi: 10.20961/stjssa.v16i2.29730.

Osman KT. 2013. Soil Degradation, Conservation and Remediation. Springer Dordrecht Heidelberg, New York.

Parent S, Parent L, Rozanne DE, Hernandes A, and Natale W. 2016. Nutrient Balance as Paradigm of Soil and Plant Chemometrics. Intech i(tourism): 13. doi: http://dx.doi.org/10.5772/57353.

Putra AN, Adelyanti M, Sitorus AF, Hakim QL, Rahma MJ, et al. 2021. Response Macronutrient Content of Saline-Resistant Paddy to the Saline Source Distance. J. Trop. Soils, 26(2): 63–74. doi: 10.5400/jts.2021.v26i2.63.

Qurrohman BFT, Suriadikusumah A, Joy B, Sudirja R. 2023. Spatial distribution of status silicon availability for plant and its effect to rice yield. Sains Tanah - J. Soil Sci. Agroclimatol., 20(1): 10. doi: 10.20961/stjssa.v20i1.65862.

Sudirja R, Permana I, Rosniawaty S. 2019. Bio agent added organomineral nitrogen fertilizer for heavy metal contaminated paddy field treatment. IOP Conf. Ser. Earth Environ. Sci., 393(1): 7–13. doi: 10.1088/1755-1315/393/1/012028.

Syed S, Chinthala P. 2015. Heavy Metal Detoxification by Different Bacillus Species Isolated from Solar Salterns. Scientifica: 1–8. doi: 10.1155/2015/319760.

Tong D, Xu R. 2012. Effects of urea and (NH4)2SO4 on nitrification and acidification of Ultisols from Southern China. J. Environ. Sci., 24(4): 682–689. doi: https://doi.org/10.1016/S1001-0742(11)60832-2.

Wang Y, Lu J, Ren T, Hussain S, Guo C, et al. 2017. Effects of nitrogen and tiller type on grain yield and physiological responses in rice. AoB Plants, 9(2). doi: 10.1093/aobpla/plx012.

Wu S, Li R, Peng S, Liu Q, Zhu X. 2017. Effect of humic acid on transformation of soil heavy metals. IOP Conf. Series: Materials Science and Engineering. p. 1–7




DOI: https://doi.org/10.24198/kultivasi.v22i2.47097

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Kultivasi Indexed by:

       width=    

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View Jurnal Kultivasi Stat