Microbial phosphate solubilization mechanisms in P solubilizing in andisol
Abstract
Phosphate (P) nutrient plays a significant role in plant growth and yield. P is an essential element that plays an important role in photosynthesis and root development. Phosphate nutrient availability is deficient in some soil types due to retention, such as in Andisol soil types. High phosphate retention in Andisol soil types causes P nutrients to be unavailable to plants and can reduce crop yields. The availability of P in Andisol soils can be done, among others, by applying phosphate solubilizing microbes. Phosphate solubilizing microorganisms are soil microorganisms consisting of bacteria and fungi that can mineralize organic P, dissolve inorganic P minerals, and store large amounts of P to make it available to plants. This literature review aims to determine the mechanism of phosphate-solubilizing microbes in P dissolution in Andisol soil. The methods used in this systematic review are collecting data through the internet and utilizing recognized sources such as Science Direct, Research Gate, Google Scholar, and Web of Science. Content analysis was performed on the collected data, and the results were organized into thematic categories. Furthermore, the findings are presented descriptively with the help of tables to facilitate understanding. Since phosphate-solubilizing microorganisms can dissolve P in the soil through chemical and biological mechanisms, it can be concluded that phosphate-solubilizing microorganisms also have an important role in the soil P cycle. The implications of this literature review are to understand the retention of P nutrients in Andisols and how the dissolution mechanism works, as well as the use of microbes as a solution to increase phosphate dissolution so that it is available to plants.
Keywords
Full Text:
PDFReferences
Adhikari P, Pandey A. 2019. Phosphate solubilization potential of endophytic fungi isolated from Taxus wallichiana Zucc. roots. Rhizosphere, 9: 2-9. https://doi.org/10.1016/j.rhisph.2018.11.002
Ahmad M, Ahmad M, El-Naggar AH, Usman AR, Abduljabbar A, Vithanage M, Elfaki J, Abdulelah AF, Al-Wabel MI. 2018. Aging effects of organic and inorganic fertilizers on phosphorus fractionation in a calcareous sandy loam soil. Pedosphere, 28: 873–883.
Ahmed E, Holmström SJ. 2014. Siderophores in environmental research: roles and applications. Microbial biotechnology, 7(3): 196-208. https://doi.org/10.1111/1751-7915.12117
Alori ET, Glick BR, Babalola OO. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in microbiology, 8: 971. https://doi.org/10.3389/fmicb.2017.00971
Anda M, Dahlgren RA. 2020. Mineralogical and surface charge characteristics of Andosols experiencing long-term, land-use change in West Java, Indonesia. Soil Sci. Plant Nutrition, 66(5):702-713.
Barrow NJ, Debnath A, Sen A. 2018. Mechanisms by which citric acid increases phosphate availability. Plant and soil, 423: 193-204
Ben Zineb A, Trabelsi D, Ayachi I, Barhoumi F, Aroca R, Mhamdi R. 2020. Inoculation with elite strains of phosphate-solubilizing bacteria enhances the effectiveness of fertilization with rock phosphates. Geomicrobiology journal, 37(1): 22-30. https://doi.org/10.1080/01490451.2019.1658826
Bi QF, Zheng BX, Lin XY, Li KJ, Liu XP, Hao XL, ... Zhu Y G. 2018. The microbial cycling of phosphorus on long-term fertilized soil: Insights from phosphate oxygen isotope ratios. Chemical Geology, 483:56-64.
Billah M, Khan M, Bano A, Hassan TU, Munir A, Gurmani AR. 2019. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 36(10): 904-916.
Biswas JK, Banerjee A, Rai M, Naidu R, Biswas B, Vithanage M, ... Meers E. 2018. Potential application of selected metal resistant phosphate solubilizing bacteria isolated from the gut of earthworm (Metaphire posthuma) in plant growth promotion. Geoderma, 330: 117-124. https://doi.org/10.1016/j.geoderma.2018.05.034
Borggaard OK, Raben-Lange B, Gimsing AL, Strobel BW. 2005. Influence of humic substances on phosphate adsorption by aluminium and iron oxides. Geoderma 127(3-4): 270-279. https://doi.org/10.1016/j.geoderma.2004.12.011
Bononi L, Chiaramonte JB, Pansa CC, Moitinho MA, Melo IS. 2020. Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Sci Rep. 10: 1–13. https://doi.org/10.1038/s41598-020-59793-8
Borriss R. 2014. Bacillus, a plant-beneficial bacterium. In Principles of plant-microbe interactions: microbes for sustainable agriculture. (pp. 379-391). Cham: Springer international publishing. https://doi.org/10.1007/978-3-319-08575-3_40
Borriss R. 2015. Bacillus, a Plant Beneficial Bacterium. In Lugtenberg, B (Ed). Principles of Plant-Microbe Interactions. Microbes for Sustainable Agriculture. Springer Publishing, Switzerland: 379- 391. https://doi.org/10.1007/978-3-319-08574-6
Cao L, Gao Y, Yu J, Niu S, Zeng J, Yao Q, ... Zhu Y. 2021. Streptomyces hygroscopicus OsiSh-2-induced mitigation of Fe deficiency in rice plants. Plant Physiology and Biochemistry, 158: 275-283.
Chawngthu L, Hnamte R, Lalfakzuala R. 2020. Isolation and characterization of rhizospheric phosphate solubilizing bacteria from wetland paddy field of Mizoram, India. Geomicrobiology Journal, 37(4): 366-375. https://doi.org/10.1080/01490451.2019.1709108
Chen Y, Fan JB, Du L, Xu H, Zhang QH, He YQ. 2014. The application of phosphate solubilizing endophyte Pantoea dispersa triggers the microbial community in red acidic soil. Appl. Soil Ecol. 84: 235-244. https://doi.org/10.1016/j.apsoil.2014.05.014
Chitraselvi RPE, Kalidass S, Rajiv K. 2015. Efficiency of rhizosphere bacteria in production of indole acetic acid, siderophore and phosphate solubilization. International Journal of ChemTech Research, 7(6): 2557-2564. http://sphinxsai.com/2015/ch_vol7_no6...
Della Mónica, IF, Godeas AM, Scervino JM. 2020. In vivo modulation of arbuscular mycorrhizal symbiosis and soil quality by fungal P solubilizers. Microbial ecology, 79(1), 21-29. https://doi.org/10.1007/s00248-019-01396-6
Din M, Nelofer R, Salman M, Khan FH, Khan A, Ahmad M, Khan M. 2019. Production of nitrogen fixing Azotobacter (SR-4) and phosphorus solubilizing Aspergillus niger and their evaluation on Lagenaria siceraria and Abelmoschus esculentus. Biotechnology Reports, 22, e00323. https://doi.org/10.1016/j.btre.2019.e00323
do Carmo TS, Moreira FS, Cabral BV, Dantas RC, de Resende MM, Cardoso VL, Ribeiro EJ. 2019. Phosphorus recovery from phosphate rocks using phosphate-solubilizing bacteria. Geomicrobiology Journal, 36(3): 195-203. https://doi.org/10.1080/01490451.2018.1534901
Fatima F, Ahmad MM, Verma SR, Pathak N. 2022. Relevance of phosphate solubilizing microbes in sustainable crop production: a review. International Journal of Environmental Science and Technology, 19(9): 9283-9296. https://doi.org/10.3389/fmicb.2017.00971
Farmer VC, McHardy WJ, Palmieri F, Violante A, Violante P. 1991. Synthetic allophanes formed in calcareous environments: Nature, conditions of formation, and transformations. Soil Science Society of America Journal, 55(4): 1162-1166. https://doi.org/10.2136/sssaj1991.03615995005500040044x
Ferreira CM, Vilas-Boas Â, Sousa CA, Soares HM, Soares EV. 2019. Comparison of five bacterial strains producing siderophores with ability to chelate iron under alkaline conditions. AMB Express, 9(1): 78. https://doi.org/10.1186/s13568-019-0796-3
Gonzalez-Rodriguez S, Fernandez-Marcos ML. 2018. Phosphate sorption and desorption by two contrasting volcanic soils of equatorial Africa. PeerJ. 6, e5820.
Gu S, Wei Z, Shao Z, Friman VP, Cao K, Yang T, ... Jousset A. 2020. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nature Microbiology, 5(8): 1002-1010.
Hassan TU, Bano A. 2015. Role of carrier based biofertilizer in reclamation of saline soil. Archives Agron. Soil. Sci. 61(12): 1719-1731. https://doi/abs/10.1080/03650340.2015.1036045
Herzberg M, Elimelech M. 2008. Physiology and genetic traits of reverse osmosis membrane biofilms: a case study with Pseudomonas aeruginosa. The ISME Journal, 2(2): 180-194. https://doi.org/10.1038/ismej.2007.108
Hii YS, San Chan Y, Lau SW, Michael D. 2020. Isolation and characterization of phosphate solubilizing microorganisms from peat. Biocatal Agric Biotechnol, 26, 101463. https://doi.org/10.1016/j.bcab.2020.101643
Hussain A, Adnan M, Hajira SI, Fahad S, Saeed M, Mian IA, ... Andaleeb S. 2019. Combining phosphorus (P) with phosphate solubilizing bacteria (PSB) improved wheat yield and P uptake in alkaline soil. Pure and Applied Biology, 8{2): 1809-1817. https://doi.org/10.19045/bspab.2019.80124
Ichriani GI, Nuraini Y, Handayanto 2018. Formulation of biochar compost and phosphate solubilizing fungi from oil palm empty fruit bunch to improve growth of maize in an ultisol of Central Kalimantan. J Ecol Eng. 19, 45–55. https://doi.org/10.12911/22998993/92891
Ingle KP, Padole DA. 2017. Phosphate solubilizing microbes: An overview. International Journal of Current Microbiology and Applied Sciences, 6(1): 844-852. http://dx.doi.org/10.20546/ijcmas.2017.601.099
Kalayu G. 2019. Phosphate solubilizing microorganisms: Promising approach as biofertilizers. Int J Agron. Article ID. 4917256. https://doi.org/10.1155/2019/4917256
Khan I, Fahad S, Wu L, Zhou W, Xu P, Sun Z, ... Hu R. 2019. Labile organic matter intensifies phosphorous mobilization in paddy soils by microbial iron (III) reduction. Geoderma, 352: 185-196. https://doi.org/10.1016/j.geoderma.2019.06.011
Khan A, Gupta A, Singh P, Mishra AK, Ranjan RK, Srivastava A. 2020. Siderophore-assisted cadmium hyperaccumulation in Bacillus subtilis. International microbiology, 23: 277-286.
Kim DY, Kadam A, Shinde S, Saratale RG, Patra J, Ghodake G. 2018. Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. Journal of the Science of Food and Agriculture, 98(3): 849-864. https://doi.org/10.1002/jsfa.8749
Kishore N, Pindi PK, Reddy SR. 2015. Phosphate-solubilizing microorganisms: a critical review. In: Bahadur B, Venkat Rajam M, Sahijram L, Krishnamurthy K. (eds) Plant Biology and Biotechnology. Springer, New Delhi, pp 307–333. https://doi.org/10.1007/978-81-322-2286-6_12
Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V, ... Saxena AK. 2020. Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatalysis and Agricultural Biotechnology, 23, 101501. https://doi.org/10.1016/j.bcab.2020.101501
Kumar R, Shastri B. 2017. Role of phosphate-solubilising microorganisms in sustainable agricultural development. In Agro-Environmental Sustainability: Volume 1: Managing Crop Health (pp. 271-303). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-49724-2_13
Li Z, Bai T, Dai L, Wang F, Tao J, Meng S, ... Hu S. 2016. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Scientific reports, 6(1), 25313. https://doi.org/10.1038/srep25313
Li H, Li Z, Qu J, Tian H, Yang X. 2018. Combined effects of phosphate-solubilizing bacterium XMT-5 (Rhizobium sp.) and submerged macrophyte Ceratophyllum demersum on phosphorus release in eutrophic lake sediments. Environmental Science and Pollution Research, 25: 18990-19000. https://doi.org/10.1007/s11356-018-2022-2
Liu C, Mou L, Yi J, Wang J, Liu A, Yu J. 2019. The eno gene of Burkholderia cenocepacia strain 71-2 is involved in phosphate solubilization. Current Microbiology, 76: 495-502. https://doi.org/10.1007/s00284-019-01642-7
Martinez OA, Crowley DE, Mora ML, Jorquera MA. 2015. Short-term study shows that phytate-mineralizing rhizobacteria inoculation affects the biomass, phosphorus (P) uptake and rhizosphere properties of cereal plants. J Soil Sci Plant Nutr. 15: 153–166. https://doi.org/10.4067/S0718-95162015005000013
Marpaung AE, Hanum H, Sembiring M. 2021. The effect of liquid organic fertilizer and phosphate solubilising bacteria Bacillus sp on potato growth (Solanum tuberosum) in andisol soil. In IOP Conference Series: Earth and Environmental Science, 807(4): 042079, July. IOP Publishing. https://doi.org/10.1088/1755-1315/807/4/042079
Marpaung AE, Susilowati DN. 2021. Isolation and identification of phosphate solubilising bacteria from potato rhizosphere on andisol. In IOP Conference Series: Earth and Environmental Science, 810(1): 012041, August. IOP Publishing. https://doi.org/10.1088/1755-1315/810/1/012041
Mendes GDO, Zafra DL, Vassilev NB, Silva IR, Ribeiro Jr JI., Costa MD. 2014. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity. Applied and Environmental Microbiology, 80(10): 3081-3085. https://doi.org/10.1128/AEM.00241-14
Mercl F, García-Sánchez M, Kulhánek M, Košnář Z, Száková J, Tlustoš P. 2020. Improved phosphorus fertilisation efficiency of wood ash by fungal strains Penicillium sp. PK112 and Trichoderma harzianum OMG08 on acidic soil. Applied Soil Ecology, 147, 103360. https://doi.org/10.1016/j.apsoil.2019.09.010
Mitra D, Anđelković S, Panneerselvam P, Senapati A, Vasić T, Ganeshamurthy AN, ... Radha TK. 2020. Phosphate-solubilizing microbes and biocontrol agent for plant nutrition and protection: current perspective. Communications in Soil Science and Plant Analysis, 51(5): 645-657. https://doi.org/10.1080/00103624.2020.1729379
Munir I, Bano A, Faisal M. 2019 Impact of phosphate solubilizing bacteria on wheat (Triticum aestivum) in the presence of pesticides. Braz J Biol., 79: 29–37. https://doi.org/10.1590/1519-6984.172213
Nacoon S, Jogloy S, Riddech N, Mongkolthanaruk W, Kuyper TW, Boonlue S. 2020. Interaction between phosphate solubilizing bacteria and arbuscular mycorrhizal fungi on growth promotion and tuber inulin content of Helianthus tuberosus L. Scientific reports, 10(1): 4916. https://doi.org/10.1038/s41598-020-61846-x
Ojuederie OB, Babalola OO. 2017. Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. International journal of environmental research and public health, 14(12): 1504. https://doi.org/10.3390/ijerph14121504
Onireti OO, Lin C, Qin J. 2017. Combined effects of low-molecular-weight organic acids on mobilization of arsenic and lead from multi-contaminated soils. Chemosphere, 170: 161-168. https://doi.org/10.1016/j.chemosphere.2016.12.024
Osorno L, Osorio NW, Habte M. 2018 ‘Phosphate desorption by a soil fungus in selected Hawaiian soils differing in their mineralogy. Tropical Agriculture, 95(2): 154–166.
Panhwar QA, Naher UA, Jusop S, Othman R, Latif MA, Ismail MR (2014). Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth. PloS one, 9(10): e97241. https://doi.org/10.1371/journal.pone.0116035
Penn CJ, Camberato JJ. 2019. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture, 9(6): 120. https://doi.org/10.3390/agriculture9060120
Perea Rojas YDC, Arias RM, Medel Ortiz R, Trejo Aguilar D, Heredia G, Rodríguez Yon Y. 2019. Effects of native arbuscular mycorrhizal and phosphate-solubilizing fungi on coffee plants. Agroforestry Systems, 93: 961-972. https://doi.org/10.1007/s10457-018-0190-1
Prakash J, Arora NK (2019). Phosphate-solubilizing Bacillus sp. Enhances growth, phosphorus uptake and oil yield of Mentha arvensis L. 3 Biotech, 9(4): 126. https://doi.org/10.1007/s13205-019-1660-5
Rfaki A, Zennouhi O, Aliyat FZ, Nassiri L, Ibijbijen J. 2020. Isolation, selection and characterization of root-associated rock phosphate solubilizing bacteria in moroccan wheat (Triticum aestivum L.). Geomicrobiology Journal, 37(3): 230-241. https://doi.org/10.1080/01490451.2019.1694106
Schneider KD, Thiessen Martens JR, Zvomuya F, Reid DK, Fraser TD, Lynch DH, ... Wilson HF. 2019. Options for improved phosphorus cycling and use in agriculture at the field and regional scales. Journal of Environmental Quality, 48(5): 1247-1264. https://doi.org/10.2134/jeq2019.02.0070
Sembiring M, Elfiati D, Sutarta ES, Sabrina T. 2016. Effect of Burkholderia cepacia and SP36 on available phosphate and potato production on Andisol impacted by Mount Sinabung Eruption, North Sumatera, Indonesia. Journal of Applied Horticulture, 18(3): 233-235. DOI:https://doi.org/10.37855/jah.2016.v18i03.41.
Setiawati MR, Pranoto E. 2015. Perbandingan Beberapa Bakteri Pelarut Fosfat Eksogen Pada Tanah Andisol Sebagai Areal Pertanaman Teh Dominan Di Indonesia. Jurnal Penelitian Teh Dan KIna, 18: 159–164.
Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2: 1-14. https://doi.org/10.1186/2193-1801-2-587
Sharma R, Walia A, Chauhan A, Shirkot CK. 2015. Multi-trait plant growth promoting bacteria from tomato rhizosphere and evaluation of their potential as bioinoculants. Applied Biological Research, 17(2): 113-124. Doi: 10.5958/0974-4517.2015.00019.1
Singh P, Banik RM. 2019. Effect of purified alkaline phosphatase from Bacillus licheniformis on growth of Zea mays L. Plant Science Today, 6(sp1): 583-589. https://doi.org/10.14719/pst.2019.6.sp1.676
Suárez-Moreno ZR, Vinchira-Villarraga DM, Vergara-Morales DI, Castellanos L, Ramos FA, Guarnaccia C ... Moreno-Sarmiento N. 2019. Plant-growth promotion and biocontrol properties of three Streptomyces spp. isolates to control bacterial rice pathogens. Frontiers in microbiology, 10: 290. https://doi.org/10.3389/fmicb.2019.00290
Sukarman, Dariah A. 2014. Tanah Andisol di Indonesia Karakteristik, Potensi, Kendala dan Pengelolaan (Badan Penelitian dan Pengembangan Pertanian, Bogor) pp. 156
Sun F, Song C, Wang M, Lai DY, Tariq A, Zeng F, ... Peng C. 2020. Long-term increase in rainfall decreases soil organic phosphorus decomposition in tropical forests. Soil Biology and Biochemistry, 151, 108056.
Susilowati DN, Sudiana IM, Mubarik NR, Suwanto A. 2015. Species and functional diversity of rhizobacteria of rice plant in the coastal soils of Indonesia. Indones J Agric Sci., 16: 39–51
Susilowati DN, Sofiana I, Atmini KD, Yuniarti E. 2020. Penapisan Kapang Asal Lahan Sulfat Masam Kalimantan Selatan Sebagai Penghasil Enzim Ekstraseluler. Agric, 32(1): 65-82. https://doi.org/10.24246/agric.2020.v32.i1.p65-82
Tan KH. 1991. Dasar-dasar Kimia Tanah. Gadjah Mada University Press. Yogyakarta.
Teng Z, Shao W, Zhang K, Huo Y, Li M. 2019. Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization. J Environ Manag, 231: 89–197. https://doi.org/10.1016/j.jenvman.2018.10.012
Tian J, Ge F, Zhang D, Deng S, Liu X. 2021. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology, 10(2): 158.
Tomer, S., Suyal, D. C., & Goel, R. (2016). Biofertilizers: a timely approach for sustainable agriculture. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 375–395. https://doi.org/10.1007/978-981-10-2854-0_17
Toscano-Verduzco FA, Cedeño-Valdivia PA, Chan-Cupul W, Hernandez-Ortega HA, Ruiz-Sanchez E, Galindo-Velasco E, Cruz-Crespo E. 2020. Phosphates solubilization, indol-3-acetic acid and siderophores production by Beauveria brongniartii and its effect on growth and fruit quality of Capsicum chinense. J Hortic Sci Biotechnol, 95: 235–246. https://doi.org/10.1080/14620316.2019.1662737
Uchida S, Hashimoto Y, Takamoto A, Noguchi K, Klysubun W, Wang SL 2022. Phosphate binding to allophane and ferrihydrite with implications for volcanic ash soils. Soil Science Society of America Journal, 86(6): 1571-1581.
Ulfiyati N, Zulaika E. 2016. Isolat Bacillus pelarut fosfat dari kalimas surabaya. Jurnal Sains dan Seni ITS, 4(2). https://doi.org/10.12962/j23373520.v4i2.14049
Vinci G, Cozzolino V, Mazzei P, Monda H, Savy D, Drosos M, Piccolo A. 2018. Effects of Bacillus amyloliquefaciens and different phosphorus sources on Maize plants as revealed by NMR and GC-MS based metabolomics. Plant and Soil, 429: 437–450. https://doi.org/10.1007/s11104-018-3701-y
Wei Y, Zhao Y, Fan Y, Lu Q, Li M, Wei Q, Zhao Y, Cao Z, Wei Z. 2017. Impact of phosphate-solubilizing bacteria inoculation methods on phosphorus transformation and long-term utilization in composting. Bioresour. Technol., 241: 134-141.
Weil, R. R., & Brady, N. C. (2019). Elements of the nature and properties of soils. Fourth edition. NY, NY, Pearson.
Zaheer A, Malik A, Sher A, Qaisrani MM, Mehmood A, Khan SU, ... Rasool M. 2019. Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi journal of biological sciences, 26(5): 1061-1067. https://doi.org/10.1016/j.sjbs.2019.04.004
Zhang L, Fan J, Feng G, Declerck S. 2019. The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 43194 induces the gene expression of citrate synthase in the tricarboxylic acid cycle of the phosphate-solubilizing bacterium Rahnella aquatilis HX2. Mycorrhiza, 29: 69–75. https://doi.org/10.1007/s00572-018-0871-7
Zhang Y, Li TT, Wang LF, Guo JX, Lu KK, Song RF, ... Liu WC. 2022. Abscisic acid facilitates phosphate acquisition through the transcription factor ABA INSENSITIVE5 in Arabidopsis. Plant J., 111: 269–281.
Zheng BX, Ding K, Yang XR, Wadaan MA, Hozzein WN, Peñuelas J, Zhu YG. 2019. Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake. Science of the total environment, 647: 1113-1120. https://doi.org/10.1016/j.scitotenv.2018.07.454
Zhu J, Li M, Whelan M. 2018. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Sci Total Environ, 612: 522–537. https://doi.org/10.1016/j.scitotenv.2017.08.095
DOI: https://doi.org/10.24198/kultivasi.v23i2.52749
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Kultivasi Indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.