Prebiotic Activity of Pectin from Ambon Lumut Banana (Musa acuminata AAA) Peel

Bertha Rusdi, Onoy Rohaeni, Miski A. Khairinisa, Umi Yuniarni

Abstract


Banana peel is an agricultural waste that contains pectin. Ambon lumut banana (Musa acuminata AAA) is often consumed in Indonesia, but its peel is rarely utilized thus the availability of Ambon lumut banana peel in Indonesia is high. Pectin selectively increases beneficial gut bacteria, and this is commonly known as prebiotic. This study aims to evaluate the prebiotic activity of Ambon lumut banana peel by observing the growth of a beneficial gut bacteria, Lactobacillus acidophilus, and pathogen enteric bacteria, Escherichia coli, in media (MRSB) enriched with the pectin. The result showed that 1% of Ambon lumut banana peel pectin significantly increased the number of L. acidophilus and decreased the number of E. coli compared to bacteria culture without carbon source (glucose-free MRSB) and bacteria culture with glucose as carbon source. The prebiotic index of Ambon lumut banana peel pectin was 0.53. In addition to that, the short chain fatty acid (SCFA) which is beneficial metabolite of L. acidophilus for human health was also measured using HPLC.  The HPLC analysis results showed that L. acidophilus culture enriched with pectin contains SCFA, including acetic acid, butyric acid, and propionic acid at the concentration of 10.22 µg/mL, 5.38 µg/mL and 0.55 µg/mL respectively.

Keywords


pectin, Ambon lumut banana peel, prebiotic, Lactobacillus acidophilus

Full Text:

PDF

References


Roberfroid M. Prebiotics: The Concept Revisited. The Journal of Nutrition. 2007; 137(3): 830S-837S. DOI: 10.1093/jn/137.3.830S

Wichienchot S, Wan Ishak WR. Prebiotics and Dietary Fibers from Food Processing By-Products. In: ed. Anal AK. Food Processing By‐Products and their Utilization. 1st ed. Hoboken: Wiley-Blackwell; 2017. p. 137–74.

Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016; 165(6): 1332–45. DOI: 10.1016/j.cell.2016.05.041

Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, et al. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods. 2019; 8(3): 92. DOI: 10.3390%2Ffoods8030092

Azmi AFMN, Mustafa S, Hashim DM, Manap YA. Prebiotic activity of polysaccharides extracted from Gigantochloa levis (Buluh beting) shoots. Molecules. 2012;17(2):1635–51.

Khamsucharit P, Laohaphatanalert K, Gavinlertvatana P, Sriroth K, Sangseethong K. Characterization of pectin extracted from banana peels of different varieties. Food Science and Biotechnology. 2018; 27(3): 623–9. DOI: 10.1007%2Fs10068-017-0302-0

Doan CT, Chen CL, Nguyen VB, Tran TN, Nguyen AD, Wang SL. Conversion of Pectin-Containing By-Products to Pectinases by Bacillus amyloliquefaciens and Its Applications on Hydrolyzing Banana Peels for Prebiotics Production. Polymers. 2021; 13(9): 1483. DOI: 10.3390/polym13091483

Tuhuloula A, Budiyarti L, Fitriana EN. Karakterisasi pektin dengan memanfaatkan limbah kulit pisang menggunakan metode ekstraksi. Konversi. 2013; 2(1): 21–7. DOI: 10.20527/k.v2i1.123

Lopes SMS, Francisco MG, Higashi B, de Almeida RTR, Krausová G, Pilau EJ, et al. Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures. Carbohydrate Polymers. 2016; 152: 718–25. DOI: 10.1016/j.carbpol.2016.07.043

Huebner J, Wehling RL, Parkhurst A, Hutkins RW. Effect of processing conditions on the prebiotic activity of commercial prebiotics. International Dairy Journal. 2008; 18(3): 287–93. DOI: 10.1016/j.idairyj.2007.08.013

Phirom-on K, Apiraksakorn J. Development of cellulose-based prebiotic fiber from banana peel by enzymatic hydrolysis. Food Bioscience. 2021; 41: 101083. DOI: 10.1016/j.fbio.2021.101083

Guerrant GO, Lambert MA, Moss CW. Analysis of short-chain acids from anaerobic bacteria by high-performance liquid chromatography. Journal of Clinical Microbiology. 1982; 16(2): 355–60. DOI: 10.1128%2Fjcm.16.2.355-360.1982

Slavin J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients. 2013; 5(4): 1417-35. DOI: 10.3390%2Fnu5041417

Robledo VR, Vázquez LIC. Pectin - Extraction, Purification, Characterization and Applications. In: ed. Masuelli MA, Pectins - Extraction, Purification, Characterization and Applications. Rijeka: IntechOpen; 2019. ch. 3.

Chan SY, Choo WS. Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. Food Chemistry. 2013; 141(4): 3752–8. DOI: 10.1016/j.foodchem.2013.06.097

Carlson JL, Erickson JM, Lloyd BB, Slavin JL. Health Effects and Sources of Prebiotic Dietary Fiber. Current Developments in Nutrition. 2018; 2(3): nzy005. DOI: 10.1093/cdn/nzy005

Setiarto RHB, Widhyastuti N, Saskiawan I, Safitri RM. Pengaruh Variasi Konsentrasi Inulin Pada Proses Fermentasi Oleh L. Acidophilus, L. Bulgaricus Dan S. Thermophillus. Biopropal Industri. 2017; 8(1): 1–17.

Zarinah Z, Anis AA, Napisah H, Shazila S. Prebiotic activity score of breadfruit resistant starch (Artocarpus altilis), breadfruit flour, and inulin during in-vitro fermentation by pure cultures (Lactobacillus plantarum, and Bifidobacterium bifidum). Journal of Agrobiotechnology. 2018; 9(1S): 122–31.

Adebola OO, Corcoran O, Morgan WA. Synbiotics: the impact of potential prebiotics inulin, lactulose and lactobionic acid on the survival and growth of lactobacilli probiotics. Journal of Functional Foods. 2014; 10: 75–84. DOI: 10.1016/j.jff.2014.05.010

Bedani R, Rossi EA, Saad SMI. Impact of inulin and okara on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product and probiotic survival under in vitro simulated gastrointestinal conditions. Food Microbiology. 2013; 34(2): 382–9. DOI: 10.1016/j.fm.2013.01.012

Blanco-Pérez F, Steigerwald H, Schülke S, Vieths S, Toda M, Scheurer S. The Dietary Fiber Pectin: Health Benefits and Potential for the Treatment of Allergies by Modulation of Gut Microbiota. Current Allergy and Asthma Reports. 2021; 21(10): 43. DOI: 10.1007/s11882-021-01020-z

Wang L, Cen S, Wang G, Lee YK, Zhao J, Zhang H, et al. Acetic acid and butyric acid released in large intestine play different roles in the alleviation of constipation. Journal of Functional Foods. 2020; 69: 103953. DOI: 10.1016/j.jff.2020.103953

Zhu L, Baker RD, Baker SS. Gut microbiome and nonalcoholic fatty liver diseases. Pediatric Research. 2015; 77(1): 245–51. DOI: 10.1038/pr.2014.157

Hernández MAG, Canfora EE, Jocken JWE, Blaak EE. The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity. Nutrients. 2019; 11(8): 1943. DOI: 10.3390/nu11081943

Pituch A, Walkowiak J, Banaszkiewicz A. Butyric acid in functional constipation. Przeglad Gastroenterologiczny. 2013; 8(5): 295–8. DOI: 10.5114%2Fpg.2013.38731

Xu HM, Huang HL, Xu J, He J, Zhao C, Peng Y, et al. Cross-Talk Between Butyric Acid and Gut Microbiota in Ulcerative Colitis Following Fecal Microbiota Transplantation. Frontiers in Microbiology. 2021; 12: 658292. DOI: 10.3389/fmicb.2021.658292

Załęski A, Banaszkiewicz A, Walkowiak J. Butyric acid in irritable bowel syndrome. Przeglad Gastroenterologiczny. 2013; 8(6): 350–3. DOI: 10.5114%2Fpg.2013.39917

Hosseini E, Grootaert C, Verstraete W, Van de Wiele T. Propionate as a health-promoting microbial metabolite in the human gut. Nutrition Reviews. 2011; 69(5): 245–58. DOI: 10.1111/j.1753-4887.2011.00388.x




DOI: https://doi.org/10.15416/pcpr.v7i3.41598

Refbacks

  • There are currently no refbacks.


                                                                         
Pharmacology and Clinical Pharmacy Research is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
 
                                                                      VIEW VISITOR STATS