The Effect of Ashitaba (Angelica keiskei (Miq.) Koidz.)) Sap on the Total Cholesterol Levels of Cisplatin-Induced Wistar Rats

Ika Wahyuni, Diah L. Aulifa, Aziiz M. Rosdianto, Jutti Levita

Abstract


Cisplatin is a platinum-based anticancer drug that, in long-term use, causes nephrotoxicity due to oxidative stress and increases total cholesterol and triglycerides in animal models. Angelica keiskei (Miq.) Koidz., (A. keiskei) or Japanese celery ashitaba, has been reported for its antioxidant and nephroprotective activity. This study aims to determine the activity of A. keiskei sap on total cholesterol levels of cisplatin-induced Wistar rats. The sap of A. keiskeiwas freeze-dried until a yield of 3.62% w/v was obtained. The fat content in A. keiskei sap powder was obtained at 7.36%. A total of 60 g of A. keiskei sap powder was macerated with 96% ethanol solvent (1:10) for 5 x 24 h until the ethanol extract of A. keiskei sap (ASEE) of 82.08% w/w was obtained. The pharmacology activity was conducted on male Wistar rats, which were divided into 5 groups, namely normal (treated with CMC Na 0.3%), negative (nephrotoxicity induced with cisplatin 5 mg/kg BW), positive (nephrotoxicity induced with cisplatin 5 mg/kg BW and treated with quercetin 20 mg/kg BW), and two test groups which were nephrotoxicity induced with cisplatin 5 mg/kg body weight and treated with ASEE 1000 mg/kg BW, and ASEE 1500 mg/ kg BW. It was found that neither dose of ASEE altered the total cholesterol levels in cisplatin-induced male Wistar rats and could maintain the cholesterol levels in the normal range.


Keywords


Angelica keiskei sap, cholesterol, cisplatin

Full Text:

PDF

References


S. Ghosh, Cisplatin: The first metal based anticancer drug. Bioorganic Chemistry. 88 (2019) 102925. https://doi.org/10.1016/j.bioorg.2019.102925.

S. Dasari, P. Bernard Tchounwou, Cisplatin in cancer therapy: Molecular mechanisms of action. European Journal of Pharmacology. 740 (2014) 364–378. https://doi.org/10.1016/j.ejphar.2014.07.025.

M. Fuertes, J. Castilla, C. Alonso, J. Pérez, Cisplatin Biochemical Mechanism of Action: From Cytotoxicity to Induction of Cell Death Through Interconnections Between Apoptotic and Necrotic Pathways. Current Medicinal Chemistry. 10 (2003) 257–266. https://doi.org/10.2174/0929867033368484.

K. Barabas, R. Milner, D. Lurie, C. Adin, Cisplatin: a review of toxicities and therapeutic applications. Veterinary and Comparative Oncology. 6 (2008) 1–18. https://doi.org/10.1111/j.1476-5829.2007.00142.x.

D. Portilla, S. Li, K.K. Nagothu, J. Megyesi, B. Kaissling, L. Schnackenberg, R.L. Safirstein, R.D. Beger, Metabolomic study of cisplatin-induced nephrotoxicity, Kidney International. 69 (2006) 2194–2204. https://doi.org/10.1038/sj.ki.5000433.

C. Tang, M.J. Livingston, R. Safirstein, Z. Dong, Cisplatin nephrotoxicity: new insights and therapeutic implications, Nature Reviews Nephrology. 19 (2023) 53–72. https://doi.org/10.1038/s41581-022-00631-7.

A.A. Abdel-Gayoum, K.B. El-Jenjan, K.A. Ghwarsha, Hyperlipidaemia in cisplatin-induced nephrotic rats, Human & Experimental Toxicology. 18 (1999) 454–459. https://doi.org/10.1191/096032799678840255.

D.L. Aulifa, I.K. Adnyana, J. Levita, S. Sukrasno, 4-Hydroxyderricin isolated from the sap of angelica keiskei koidzumi: Evaluation of its inhibitory activity towards dipeptidyl peptidase-iv, Scientia Pharmaceutica. 87 (2019) 3–12. https://doi.org/10.3390/scipharm87040030.

D.N. Zain, R. Amalia, D.L. Aulifa, J. Levita, Chalcone Content in the Ethanol Extract of Angelica keiskei Leaves by Spectrophotometric Method, Journal of Pharmacopolium. 2 (2019) 162–166.

L. Zhang, Y. Jiang, X. Pang, P. Hua, X. Gao, Q. Li, Z. Li, Simultaneous Optimization of Ultrasound-Assisted Extraction for Flavonoids and Antioxidant Activity of Angelica keiskei Using Response Surface Methodology (RSM), Molecules. 24 (2019). https://doi.org/10.3390/molecules24193461.

R. Amalia, D.L. Aulifa, D.N. Zain, A. Pebiansyah, J. Levita, The Cytotoxicity and Nephroprotective Activity of the Ethanol Extracts of Angelica keiskei Koidzumi Stems and Leaves against the NAPQI-Induced Human Embryonic Kidney (HEK293) Cell Line, Evidence-based Complementary and Alternative Medicine. 2021 (2021). https://doi.org/10.1155/2021/6458265.

S.J. Hewlings, D. S Kalman, V. Hackel, A study to evaluate chalcurb® a standardized powder derived from the sap of the Angelica keiskei (Ashitaba) on markers of health in adults with metabolic syndrome, Advances in Obesity, Weight Management & Control. 8 (2018). https://doi.org/10.15406/aowmc.2018.08.00244.

D.L. Aulifa, I.K. Adnyana, S. Sukrasno, J. Levita, Inhibitory activity of xanthoangelol isolated from Ashitaba (Angelica keiskei Koidzumi) towards α-glucosidase and dipeptidyl peptidase-IV: in silico and in vitro studies, Heliyon. 8 (2022) e09501. https://doi.org/10.1016/j.heliyon.2022.e09501.

H.R. Chang, H.J. Lee, J.H. Ryu, Chalcones from angelica keiskei attenuate the inflammatory responses by suppressing nuclear translocation of NF-κB, Journal of Medicinal Food. 17 (2014) 1306–1313. https://doi.org/10.1089/jmf.2013.3037.

M. Kweon, H. Lee, C. Park, Y.H. Choi, J.H. Ryu, A chalcone from ashitaba (Angelica keiskei) stimulates myoblast differentiation and inhibits dexamethasone-induced muscle atrophy, Nutrients. 11 (2019) 1–13. https://doi.org/10.3390/nu11102419.

O. Kwon, Daily Consumption of Angelica Keiskei Juice Attenuated Hyperlipidaemia and Hepatic Steatosis Caused by Western Diet in C57BL/6J Mice, Biomedical Journal of Scientific & Technical Research. 10 (2018) 7732–7739. https://doi.org/10.26717/bjstr.2018.10.001933.

M.T. Asghar, Y.A. Yusof, M.N. Mokhtar, M.E. Ya’acob, H. Mohd. Ghazali, L.S. Chang, Y.N. Manaf, Coconut ( Cocos nucifera L.) sap as a potential source of sugar: Antioxidant and nutritional properties, Food Science & Nutrition. 8 (2020) 1777–1787. https://doi.org/10.1002/fsn3.1191.

The University of Texas at Austin, Rat-Specific Anesthesia Guidance. University of Texas Austin, USA. (2020).

M. Naushad, M. Urooj, T. Ahmad, G.M. Husain, M.H. Kazmi, M. Zakir, Nephroprotective effect of Apium graveolens L. against Cisplatin-induced nephrotoxicity, Journal of Ayurveda and Integrative Medicine. 12 (2021) 607–615. https://doi.org/10.1016/j.jaim.2021.06.005.

W. Zhang, Q. Jin, J. Luo, J. Wu, Z. Wang, Phytonutrient and anti-diabetic functional properties of flavonoid-rich ethanol extract from Angelica Keiskei leaves, Journal of Food Science and Technology. 55 (2018) 4406–4412. https://doi.org/10.1007/s13197-018-3348-y.

R.R. Maronpot, Toxicological assessment of Ashitaba Chalcone, Food and Chemical Toxicology. 77 (2015) 111–119. https://doi.org/10.1016/j.fct.2014.12.021.

C. V. Burns, S.B. Edwin, S. Szpunar, J. Forman, Cisplatin-induced nephrotoxicity in an outpatient setting, Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 41 (2021) 184–190. https://doi.org/10.1002/phar.2500.

T.L. Rosenstein K, Dyslipidemia in Chronic Kidney Disease, NCBI, 2022.

E. Moreno-Gordaliza, C. Giesen, A. Lázaro, D. Esteban-Fernández, B. Humanes, B. Cañas, U. Panne, A. Tejedor, N. Jakubowski, M.M. Gómez-Gómez, Elemental Bioimaging in Kidney by LA–ICP–MS As a Tool to Study Nephrotoxicity and Renal Protective Strategies in Cisplatin Therapies, Analytical Chemistry. 83 (2011) 7933–7940. https://doi.org/10.1021/ac201933x.

S. Sekiya, H. Iwasawa, H. Takamizawa, Comparison of the intraperitoneal and intravenous routes of cisplatin administration in an advanced ovarian cancer model of the rat, American Journal of Obstetrics and Gynecology. 153 (1985) 106–111. https://doi.org/10.1016/0002-9378(85)90605-2.

R.R. Maronpot, Toxicological assessment of Ashitaba Chalcone, Food and Chemical Toxicology. 77 (2015) 111–119. https://doi.org/10.1016/j.fct.2014.12.021.

X.-X.Z. Cui-Lan You, Pei-Qing Su, Study on effect and mechanism of scutellaria baicalensis stem-leaf total flavonoid in regulating lipid metabolism, China journal of Chinese materia medica. (2008) 1064–6.

N.M. Borradaile, L.E. De Dreu, L.J. Wilcox, J.Y. Edwards, M.W. Huff, Soya phytoestrogens, genistein and daidzein, decrease apolipoprotein B secretion from HepG2 cells through multiple mechanisms, Biochemical Journal. 366 (2002) 531–539. https://doi.org/10.1042/bj20020046.

M. Leopoldini, N. Malaj, M. Toscano, G. Sindona, N. Russo, On the Inhibitor Effects of Bergamot Juice Flavonoids Binding to the 3-Hydroxy-3-methylglutaryl-CoA Reductase (HMGR) Enzyme, Journal of Agricultural and Food Chemistry. 58 (2010) 10768–10773. https://doi.org/10.1021/jf102576j.

S. Ojha, B. Islam, C. Charu, A. Adem, E. Aburawi, Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking, Drug Design, Development and Therapy. (2015) 4943. https://doi.org/10.2147/DDDT.S86705.

S. Zhan, S.C. Ho, Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile, The American Journal of Clinical Nutrition. 81 (2005) 397–408. https://doi.org/10.1093/ajcn.81.2.397.

A.H. Lichtenstein, S.M. Jalbert, H. Adlercreutz, B.R. Goldin, H. Rasmussen, E.J. Schaefer, L.M. Ausman, Lipoprotein Response to Diets High in Soy or Animal Protein With and Without Isoflavones in Moderately Hypercholesterolemic Subjects, Arteriosclerosis, Thrombosis, and Vascular Biology. 22 (2002) 1852–1858. https://doi.org/10.1161/01.ATV.0000033513.18431.A1




DOI: https://doi.org/10.15416/pcpr.v8i3.51827

Refbacks

  • There are currently no refbacks.


                                                                         
Pharmacology and Clinical Pharmacy Research is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
 
                                                                      VIEW VISITOR STATS