The Potency of Polymeric Nanoparticles as New Drug Delivery System: A Narrative Review

Kiky M. Ariesaka, Zulfa Hidayati, Siti Nurhayati, Ni L.M.N. Dewi, Moh M. Nuryady

Abstract


Polymeric nanoparticles are particles ranging from 1 to 1,000 nm that can be loaded with active compounds. Polymeric nanoparticles can be classified based on their morphological structure into nanocapsules and nanospheres. In addition, polymeric nanoparticles can also be classified based on the compound’s origin into natural and synthetic polymer. The nanoparticle production method is adjusted based on the type of drug that will be loaded. The methods commonly used for the production of polymeric nanoparticles are solvent evaporation, solvent emulsification/ diffusion, nanoprecipitation, emulsification/ reverse-salting out, and nanoprecipitation. This review also provides several examples of clinical applications of nanoparticles in the formulation of several drugs/bioactives including hyperforin, curcumin, and amphotericin B.


Keywords


drugs; nanocapsules; nanospheres; polymeric nanoparticles.

Full Text:

PDF

References


Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres M del P, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018 Dec 19;16(1):71.

Hasan S. A review on nanoparticles : Their synthesis and types. Res J Recent Sci. 2015;4:1–3.

Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: State of the art, challenges, and emerging technologies. Mol Pharm. 2013 Jun 3;10(6):2093–110.

Martinho N, Damgé C, Reis CP. Recent advances in drug delivery systems. J Biomater Nanobiotechnol. 2011;2(5):510–26.

Jahangirian H, Ghasemian lemraski E, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine. 2017 Apr;12:2957–78.

Mirza AZ, Siddiqui FA. Nanomedicine and drug delivery: a mini review. Int Nano Lett. 2014 Mar 20;4(1):94.

Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin F-H, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019 Dec 21;23:20.

Crucho CIC, Barros MT. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater Sci Eng C Mater Biol Appl. 2017 Nov;80:771–84.

Christoforidis JB, Chang S, Jiang A, Wang J, Cebulla CM. Intravitreal devices for the treatment of vitreous inflammation. Mediat Inflamm. 2012;2012:1–8.

Pund S, Joshi A. Nanoarchitectures for neglected topical protozoal diseases: Challenges and state of the art. In: Nano- and Microscale Drug Delivery Systems. Elsevier; 2017. p. 439–80.

Jawahar N, Meyyanathan S. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review. Int J Heal Allied Sci. 2012;1(4):217.

Amgoth C, Phan C, Banavoth M, Rompivalasa S, Tang G. Polymer properties: Functionalization and surface modified nanoparticles. In: Role of Novel Drug Delivery Vehicles in Nanobiomedicine. London: IntechOpen; 2020.

Bennet D, Kim S. Polymer nanoparticles for smart drug delivery. In: Application of Nanotechnology in Drug Delivery. London: InTech; 2014.

Hernández-Giottonini KY, Rodríguez-Córdova RJ, Gutiérrez-Valenzuela CA, Peñuñuri-Miranda O, Zavala-Rivera P, Guerrero-Germán P, et al. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: effects of formulation parameters. RSC Adv. 2020;10(8):4218–31.

Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020 Aug 15;25(16):3731.

Bohrey S, Chourasiya V, Pandey A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg. 2016 Dec 1;3(1):3.

Souto EB, Severino P, Santana MHA. Preparação de nanopartículas poliméricas a partir da polimerização de monômeros: parte I. Polímeros. 2012 Feb 9;22(1):96–100.

Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Kiafar F, Jelvehgari M. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res Pharm Sci. 2017;12(1):1.

Wang Y, Li P, Truong-Dinh Tran T, Zhang J, Kong L. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials. 2016 Feb 1;6(2):26.

Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. Nanoparticle: An overview of preparation and characterization. J Appl Pharm Sci. 2011;1(6):228–34.

Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin Drug Deliv. 2015 Sep 2;12(9):1459–73.

Bertoni S, Passerini N, Albertini B. Nanomaterials for oral drug administration. In: Nanotechnology for Oral Drug Delivery. Elsevier; 2020. p. 27–76.

Bazak R, Houri M, Achy S El, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol Clin Oncol. 2014 Nov;2(6):904–8.

Maeda H. Vascular permeability in cancer and infection as related to macromolecular drug delivery, with emphasis on the EPR effect for tumor-selective drug targeting. Proc Jap Acad B. 2012;88(3):53–71.

Abdolahpour S, Toliyat T, Omidfar K, Modjtahedi H, Wong AJ, Rasaee MJ, et al. Targeted delivery of doxorubicin into tumor cells by nanostructured lipid carriers conjugated to anti-EGFRvIII monoclonal antibody. Artif Cells Nanomed Biotechnol. 2018 Jan 2;46(1):89–94.

Varshosaz J. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma. World J Gastroenterol. 2015;21(42):12022.

Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, et al. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol. 2021 Feb 3;12.

Anagnostou K, Stylianakis M, Michaleas S, Skouras A. Biodegradable nanomaterials. In: Nanomaterials for Clinical Applications. Elsevier; 2020. p. 123–57.

Vilar G, Tulla-Puche J, Albericio F. Polymers and drug delivery systems. Curr Drug Deliv. 2012 Jun 1;9(4):367–94.

Calzoni E, Cesaretti A, Polchi A, Di Michele A, Tancini B, Emiliani C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J Funct Biomater. 2019 Jan 8;10(1):4.

Brewer E, Coleman J, Lowman A. Emerging technologies of polymeric nanoparticles in cancer drug delivery. J Nanomater. 2011;2011:1–10.

Bhatia S. Nanoparticles types, classification, charaterization, fabrication methods and drugs delivery application. In: Natural polymer drug delivery systems. Springer; 2016. p. 33–93.

Tabas I, Glass CK. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science (80- ). 2013;339(6116):166–72.

Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev. 2011 Oct 12;111(10):5866–98.

Koeberle A, Rossi A, Bauer J, Dehm F, Verotta L, Northoff H, et al. Hyperforin, an anti-inflammatory constituent from St. John’s Wort, inhibits microsomal prostaglandin E2 synthase-1 and suppresses prostaglandin E2 formation in vivo. Front Pharmacol. 2011;2:2–7.

Koeberle A, Werz O. Natural products as inhibitors of prostaglandin E2 and pro-inflammatory 5-lipoxygenase-derived lipid mediator biosynthesis. Biotechnol Adv. 2018 Nov;36(6):1709–23.

Friedland K, Harteneck C. Hyperforin: to be or not to be an activator of TRPC(6). Rev Physiol Biochem Pharmacol. 2015;169:1–24.

Traeger A, Voelker S, Shkodra-Pula B, Kretzer C, Schubert S, Gottschaldt M, et al. Improved bioactivity of the natural product 5-lipoxygenase inhibitor hyperforin by encapsulation into polymeric nanoparticles. Mol Pharm. 2020 Mar 2;17(3):810–6.

Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, et al. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. ProgPolym Sci. 2018 Dec;87:107–64.

Mohammad AK, Reineke JJ. Quantitative detection of PLGA nanoparticle degradation in tissues following intravenous administration. Mol Pharm. 2013 Jun 3;10(6):2183–9.

Bachelder EM, Pino EN, Ainslie KM. Acetalated dextran: A tunable and acid-labile biopolymer with facile synthesis and a range of applications. Chem Rev. 2017 Feb 8;117(3):1915–26.

World Health Organization. Latest world cancer statistics. Global cancer burden rises to 14.1 million new cases in 2012: Marked increase in breast cancers must be addressed [Internet]. 2018 [cited 2021 Jul 29]. Available from: https://www.iarc.who.int/pressrelease/latest-world-cancer-statistics-global-cancer-burden-rises-to-14-1-million-new-cases-in-2012-marked-increase-in-breast-cancers-must-be-addressed/

Ahn T-G, Lee B-R, Choi E-Y, Kim DW, Han S-J. Photodynamic therapy for breast cancer in a BALB/c mouse model. J Gynecol Oncol. 2012;23(2):115–9.

Bechnak L, Khalil C, El Kurdi R, Khnayzer RS, Patra D. Curcumin encapsulated colloidal amphiphilic block co-polymeric nanocapsules: colloidal nanocapsules enhance photodynamic and anticancer activities of curcumin. Photochem Photobiol Sci. 2020;19(8):1088–98.

Slika L, Moubarak A, Borjac J, Baydoun E, Patra D. Preparation of curcumin-poly (allyl amine) hydrochloride based nanocapsules: Piperine in nanocapsules accelerates encapsulation and release of curcumin and effectiveness against colon cancer cells. Mater Sci Eng. 2020 Apr;109:110550.

Bodratti AM, Sarkar B, Alexandridis P. Adsorption of poly(ethylene oxide)-containing amphiphilic polymers on solid-liquid interfaces: Fundamentals and applications. Adv Colloid Interface Sci. 2017;244(1):132–63.

Tadros T. Viscoelastic properties of sterically stabilised emulsions and their stability. Adv Colloid Interface Sci. 2015 Aug;222:692–708.

Bodratti A, Alexandridis P. Formulation of poloxamers for drug delivery. J Funct Biomater. 2018 Jan 18;9(1):11.

Mohamed-Ahmed AHA, Brocchini S, Croft SL. Recent advances in development of amphotericin B formulations for the treatment of visceral leishmaniasis. Curr Opin Infect Dis. 2012 Dec;25(6):695–702.

Saqib M, Ali Bhatti AS, Ahmad NM, Ahmed N, Shahnaz G, Lebaz N, et al. Amphotericin B loaded polymeric nanoparticles for treatment of leishmania infections. Nanomaterials. 2020 Jun 12;10(6):1152.

Nasr FH, Khoee S, Dehghan MM, Chaleshtori SS, Shafiee A. Preparation and evaluation of contact lenses embedded with polycaprolactone-based nanoparticles for ocular drug delivery. Biomacromolecules. 2016 Feb 8;17(2):485–95.

Rai A, Senapati S, Saraf SK, Maiti P. Biodegradable poly(ε-caprolactone) as a controlled drug delivery vehicle of vancomycin for the treatment of MRSA infection. J Mater Chem B. 2016;4(30):5151–60.

Ramanujam R, Sundaram B, Janarthanan G, Devendran E, Venkadasalam M, John Milton MC. Biodegradable polycaprolactone nanoparticles based drug delivery systems: A short review. Biosci Biotech Res Asia. 2018 Sep 28;15(3):679–85.




DOI: https://doi.org/10.15416/pcpr.v10i1.56782

Refbacks

  • There are currently no refbacks.


                                                                         
Pharmacology and Clinical Pharmacy Research is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
 
                                                                      VIEW VISITOR STATS