The effect of Indian jujube leaves extract in inhibiting the growth of Porphyromonas gingivalis

Gracia Yodianvi Pratiwi, Henry Yonatan Mandalas, Vinna Kurniawati Sugiaman

Abstract


Introduction: Periodontitis is an inflammatory disease that destroys tooth-supporting tissues and is associated with increased risk factors for systemic diseases. The main pathogen of periodontitis is the bacteria P. gingivalis, a Gram-negative, anaerobic, pleomorphic, coccobacillus, non-motile, and saccharolytic. The leaves of Indian jujube (Ziziphus mauritiana Lam.) have the main bioactive compounds such as saponins, tannins, and flavonoids which have antimicrobial activities against pathogenic microorganisms. This study aims to analyse various concentrations of the ethanol extract of Indian jujube leaves against P. gingivalis. Methods: The method used in this study was the disc diffusion test based on the Clinical and Laboratory Standard Institute. P. gingivalis preparation and the fresh leaves of Indian jujube collected from one of the plantations in Probolinggo, East Java. In this study, tests used various concentrations of Indian jujube leaves extract, namely 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100%. Data antibacterial activity was classified according to David and Stout’s inhibition zone classification. Results: Indian jujube leaves extract with a concentration between 10-30% had weak antibacterial activity, 40-60% had moderate antibacterial activity, and 70-100% had strong antibacterial activity. The largest inhibitory zone diameter against P. gingivalis was found at a concentration of 100%. Conclusion: Indian jujube leaves extract starting from a concentration of 70% can inhibit the growth of P. gingivalis with strong antibacterial activity.


Keywords


Indian jujube leaves; Porphyromonas gingivalis; periodontitis

Full Text:

PDF

References


Natto ZS, Abu Ahmad RH, Alsharif LT, Alrowithi HF, Alsini DA, Salih HA, et al. Chronic periodontitis case definitions and confounders in periodontal research: A systematic assessment. Biomed Res Int. 2018; 2018: 4578782. DOI: 10.1155/2018/4578782

Benachinmardi KK, Nagamoti J, Kothiwale S, Metgud SC. Microbial flora in chronic periodontitis: Study at a tertiary health care center from North Karnataka. J Lab Physicians. 2015; 7(1): 49-54. DOI: 10.4103/0974-2727.154798

Nazir MA. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int J Heal Sci. 2017; 1(2): 72-80.

Klein BA, Tenorio EL, Lazinski DW, Camilli A, Duncan MJ, Hu LT. Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis. BMC Genomics. 2012; 13: 578. DOI: 10.1186/1471-2164-13-578

Nakayama M, Ohara N. Molecular mechanisms of Porphyromonas gingivalis-host cell interaction on periodontal diseases. Jpn Dent Sci Rev. 2017; 53(4): 134-140. DOI: 10.1016/J.JDSR.2017.06.001

Ulpiyah Z, Shita ADP, Wahyukundari MA. Inhibition of namnam (Cynometra cauliflora L.) leaves extract on the growth of Porphyromonas gingivalis. Padjadjaran J Dent. 2019; 31(2): 106-111. DOI: 10.24198/pjd.vol31no2.18540

Rams TE, Degener JE, van Winkelhoff AJ. Antibiotic resistance in human chronic periodontitis microbiota. J Periodontol. 2014; 85(1): 160-169. DOI: 10.1902/JOP.2013.130142

Gerits E, Verstraeten N, Michiels J. New approaches to combat Porphyromonas gingivalis biofilms. J Oral Microbiol. 2017; 9(1): 1300366. DOI: 10.1080/20002297.2017.1300366

Cahyaningsih R, Magos Brehm J, Maxted N. Gap analysis of Indonesian priority medicinal plant species as part of their conservation planning. Glob Ecol Conserv. 2021; 26: e01459. DOI: 10.1016/J.GECCO.2021.E01459

Kartini K, Jayani NIE, Octaviyanti ND, Krisnawan AH, Avanti C. Standardization of some Indonesian medicinal plants used in “scientific jamu.” IOP Conf Ser Earth Environ Sci. 2019; 391(1): 012042. DOI: 10.1088/1755-1315/391/1/012042

Al Ghasham A, Al Muzaini M, Ahmad Qureshi K, Osman Elhassan G, Ahmed Khan R, Ayesha Farhana S, et al. Phytochemical screening, antioxidant and antimicrobial activities of methanolic extract of Ziziphus mauritiana Lam. leaves collected from Unaizah, Saudi Arabia. Int J Pharm Res Allied Sci. 2017; 6(3): 33-46.

Asgarpanah J, Haghighat E. Phytochemistry and pharmacologic properties of Ziziphus spina christi (L.) Willd. Afr J Pharm Pharmacol. 2012; 6(31): 2332-9. DOI: 10.5897/ajpp12.509

Parmar P, Bhatt S, Dhyani S, Jain A. Phytochemical studies of the secondary metabolites of Ziziphus mauritiana. Int J Curr Pharm Res. 2012; 4(3): 153-5.

Ouchari L, Boukeskasse A, Bouizgarne B, Ouhdouch Y. Antimicrobial potential of actinomycetes isolated from the unexplored hot Merzouga desert and their taxonomic diversity. Biol Open. 2019; 8(2): bio035410. DOI: 10.1242/BIO.035410

Dangoggo SM, Hassan LG, Sadiq IS, Manga SB. Phytochemical analysis and antibacterial screening of leaves of Diospyros mespiliformis and Ziziphus spina-christi. J Chem Eng. 2012;1(1):31-7.

Cipriano-Salazar M, Rojas-Hernández S, Olivares-Pérez J, Jiménez-Guillén R, Cruz-Lagunas B, Camacho-Díaz LM, et al. Antibacterial activities of tannic acid against isolated ruminal bacteria from sheep. Microb Pathog. 2018; 117: 255-8. DOI: 10.1016/J.MICPATH.2018.01.045

Yazaki K, Arimura GI, Ohnishi T. “Hidden” terpenoids in plants: Their biosynthesis, localization and ecological roles. Plant Cell Physiol. 2017; 58(10): 1615-21. DOI: 10.1093/PCP/PCX123

Arabski M, Wegierek-Ciuk A, Czerwonka G, Lankoff A, Kaca W. Effects of saponins against clinical E. coli strains and eukaryotic cell line. J Biomed Biotechnol. 2012; 2012: 286216. DOI: 10.1155/2012/286216

Bissinger R, Modicano P, Alzoubi K, Honisch S, Faggio C, Abed M, et al. Effect of saponin on erythrocytes. Int J Hematol. 2014; 100(1): 51-9. DOI: 10.1007/S12185-014-1605-Z

Farhadi F, Khameneh B, Iranshahi M, Iranshahy M. Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytother Res. 2019; 33(1): 13-40. DOI: 10.1002/PTR.6208

Dias MC, Pinto DCGA, Silva AMS. Plant flavonoids: Chemical characteristics and biological activity. Molecules. 2021; 26(17): 5377. DOI: 10.3390/MOLECULES26175377

Jain C, Khatana S, Vijayvergia R. Bioactivity of secondary metabolites of various plants: A review. Int J Pharm Sci Res. 2019; 10(2): 494-504. DOI: 10.13040/IJPSR.0975-8232.10(2).494-04

Kaczmarek B. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials-A minireview. Mater. 2020; 13(14): 3224. DOI: 10.3390/MA13143224

Mabhiza D, Chitemerere T, Mukanganyama S. Antibacterial properties of alkaloid extracts from Callistemon citrinus and Vernonia adoensis against Staphylococcus aureus and Pseudomonas aeruginosa. Int J Med Chem. 2016; 2016: 6304163. DOI: 10.1155/2016/6304163

Añides JA, Dapar MLG, Aranas AT, Mindo RAR, Manting MME, Torres MAJ, et al. Phytochemical, antioxidant and antimicrobial properties of the white variety of “Sibujing” (Allium ampeloprasum). Pharmacophore. 2019; 10(1): 1-12.

Albalawi AE. Antileishmanial activity of Ziziphus spina-christi leaves extract and its possible cellular mechanisms. Microorganisms. 2021; 9(10): 2113. DOI: 10.3390/MICROORGANISMS9102113

Mallakpour S, Azadi E, Hussain CM. Recent breakthroughs of antibacterial and antiviral protective polymeric materials during COVID-19 pandemic and after pandemic: Coating, packaging, and textile applications. Curr Opin Colloid Interface Sci. 2021; 55: 101480. DOI: 10.1016/J.COCIS.2021.101480

Hossain MM, Polash SA, Takikawa M, Shubhra RD, Saha T, Islam Z, et al. Investigation of the antibacterial activity and in vivo cytotoxicity of biogenic silver nanoparticles as potent therapeutics. Front Bioeng Biotechnol. 2019; 7: 239. DOI: 10.3389/FBIOE.2019.00239

Boncan DAT, Tsang SSK, Li C, Lee IHT, Lam HM, Chan TF, et al. Terpenes and terpenoids in plants: Interactions with environment and insects. Int J Mol Sci. 2020; 21(19): 7382. DOI: 10.3390/IJMS21197382

Balakrishnan S, Rajendran A, Kulandaivelu R, Nellaiappan SNTS. Saponin-mediated synthesis of hydroxyapatite by hydrothermal method: Characteristics, bioactivity, and antimicrobial behavior. J Aust Ceram Soc. 2019; 55(4): 953-67. DOI: 10.1007/S41779-019-00307-9

Cushnie TPT, Cushnie B, Lamb AJ. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents. 2014; 44(5): 377-86. DOI: 10.1016/j.ijantimicag.2014.06.001

Martinez de Tejada G, Sanchez-Gomez S, Razquin-Olazaran I, Kowalski I, Kaconis Y, Heinbockel L, et al. Bacterial cell wall compounds as promising targets of antimicrobial agents I. Antimicrobial peptides and lipopolyamines. Curr Drug Targets. 2012; 13(9): 1121-30. DOI: 10.2174/138945012802002410

Rojas ER, Billings G, Odermatt PD, Auer GK, Zhu L, Miguel A, et al. The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature. 2018; 559: 617-21. DOI: 10.1038/s41586-018-0344-3

Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 2015; 13: 620-30. DOI: 10.1038/nrmicro3480

Shankar S, Rhim JW. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydr Polym. 2015; 130: 353-63. DOI: 10.1016/J.CARBPOL.2015.05.018

Isnawati, Trimulyono G. Temperature range and degree of acidity growth of isolate of indigenous bacteria on fermented feed “fermege.” J Phys Conf Ser. 2018; 953: 012209. DOI: 10.1088/1742-6596/953/1/012209

Obeizi Z, Benbouzid H, Ouchenane S, Yılmaz D, Culha M, Bououdina M. Biosynthesis of zinc oxide nanoparticles from essential oil of Eucalyptus globulus with antimicrobial and anti-biofilm activities. Mater Today Comm. 2020; 25: 101553. DOI: 10.1016/J.MTCOMM.2020.101553




DOI: https://doi.org/10.24198/pjd.vol34no1.33007

Refbacks

  • There are currently no refbacks.


 

Creative Commons License All publications by the Universitas Padjadjaran [e-ISSN: 2549-6212, p-ISSN: 1979-0201] are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License .

Visitor Stat