Cocos nucifera l. (coir) fiber application as a filler and its effect on the volumetric shrinkage of flowable composite resin: an in vitro study
Abstract
Introduction: The use of composite resin as a restorative material has the disadvantage of experiencing volumetric shrinkage during polymerization, which can lead to restoration failure. Fiber-reinforced composites can reduce volumetric shrinkage in restorative materials. Coir fiber has the potential to replace synthetic fillers because its hollow fiber structure resembles foam, supporting a compact yet lightweight structure. This characteristic is expected to reduce the volumetric shrinkage of composite resin. This study aims to analyze the effect of coir fiber application as a filler on flowable composite resin on shrinkage, comparing it with flowable composite resin containing synthetic filler. Methods: The cellulose fiber used as a filler was synthesized from coir, while the matrix consisted of BisGMA and TEGDMA resins in a ratio 5:1. The composite was prepared with a coir fiber-to-matrix resin composition of 70:30, and polymerization was carried out by irradiation for 40 seconds. Volumetric shrinkage was tested 90 minutes after irradiation. The dimensions of the composite sample were measured from images captured using a digital microscope and analyzed with ImageJ software. The volume shrinkage was then calculated based on these dimensions. Shrinkage was further confirmed through SEM analysis of marginal adaptation tests. Results: The application of coir fiber as a filler effectively reduced the volumetric shrinkage of the composite compared to the composites with synthetic filler. Statistical analyses using the Mann-Whitney test results indicated that the type of filler in flowable composite resin had a significant effect, with a p-value of 0.047 (p<0.05). Conclusion: Application of coconut fiber as filler in flowable composite resin significantly reduce volumetric shrinkage, making it three times smaller than that of flowable composite resin with a synthetic filler.
Keywords
Full Text:
PDFReferences
Budimulia B, Aryanto M. Kebocoran mikro tumpatan resin komposit bulkfill flowable pada berbagai jarak penyinaran. Jurnal Kedokteran Gigi Universitas Padjadjaran. 2018;30(1):1-7. https://doi.org/10.24198/jkg.v30i1.17878
Ibrahim I, Luthfia P, Akbar MR, Karina C. Pengaruh Intensitas Sinar LED Terhadap Perubahan Warna Resin Komposit Flowable. Jurnal Ilmiah dan Teknologi Kedokteran Gigi. 2021;17(1):9-15. https://doi.org/10.32509/jitekgi.v17i1.1254
Abouelleil H., Pradelle N., Villat C., Attik N., Colon P, Grosgogeat B. Comparison of mechanical properties of a new fiber reinforced composite and bulk filling composites. Restor Dent Endod. 2015;40(4): 262-70. https://doi.org/10.5395/rde.2015.40.4.262
Soares CJ, Rodrigues MD, Vilela AB, Pfeifer CS, Tantbirojn D, Versluis A. Polymerization shrinkage stress of composite resins and resin cements–What do we need to know? Brazilian Oral Research. 2017;31:e62. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0062
Abdelwahed A.G., Essam S., Abdelaziz M.M. Marginal Adaptation and Depth of Cure of Flowable versus Packable Bulk-fill Restorative Materials: An In Vitro Study. Macedonian J of Medical Sciences. 2022 Feb 14; 10(D):47-56. https://doi.org/10.3889/oamjms.2022.8353
Abbasi M, Moradi Z, Mirzaei M, Kharazifard MJ, Rezaei S. Polymerization shrinkage of five bulk-fill composite resins in comparison with a conventional composite resin. J of Dentistry (Tehran, Iran). 2018;15(6):365.
Lins R, Vinagre A, Alberto N, Domingues MF, Messias A, Martins LR, Nogueira R, Ramos JC. Polymerization shrinkage evaluation of restorative resin- based composites using fiber Bragg grating sensors. Polymers. 2019;11(5):859. https://doi.org/10.3390/polym11050859
Silva JD, Freitas LA, Firmiano TC, Tantbirojn D, Versluis A, Veríssimo C. Using a professional DSLR camera to measure total shrinkage of resin composites. Brazilian Oral Research. 2022;14;36:e009. https://doi.org/10.1590/1807-3107bor-2022.vol36.0009
Rizzante FA, Duque JA, Duarte MA, Mondelli RF, Mendonça G, Ishikiriama SK. Polymerization shrinkage, microhardness and depth of cure of bulk fill resin composites. Dental Materials J. 2019;38(3):403-410. https://doi.org/10.4012/dmj.2018-063
Widjaja B, Chriswandi C. New relationship between linear shrinkage and shrinkage limit for expansive soils. In IOP Conference Series: Materials Science and Engineering 2020;1007(1):p.012187. https://doi.org/10.1088/1757-899X/1007/1/012187
Puspita S, Soesilo D, Rochyani L, Cevanti TA. Perbandingan daya antibakteri serat selulosa sabut kelapa (Cocos nucifera L.) pada konsentrasi berbeda terhadap Streptococcus mutans. J Ked Gig Univ Padj.2022;34(1):51-57. https://doi.org/10.24198/jkg.v34i1.35076
Cevanti T.A., Sari N.S.P., Isnaini S.I., Rois M.F., Setyawan H., Soetojo A., Widjiastuti I. Cellulose Fiber from Coconut Coir for Development of Dental Composite Filler. JIDMR. 2021;(14);4;1401-1406.
Dixit S., Goel R., Dubey, Shivhare P., Bhalavi T. Natural Fibre Reinforced Polymer Composite Material- A Review. Polymers from renewable resources. 2017; 8(2). https://doi.org/10.1177/204124791700800203
Cevanti TA, Rois MF, Sari NS, Isnaini SI, Sasono SR, Firdaus GM, Setyawan H, Soetojo A, Widjiastuti I. Synthesis of Cellulose Fiber from Coconut Coir as Potential Application of Dental Flowable Composite Filler. J of International Dental and Medical Research. 2022;15(2):618-22.
Cevanti T.A., Soesilo D, Pangabdian F, Wijaya YH, Puspita S, Hollanda GH. Sitotoksisitas komposit serat selulosa sabut kelapa sebagai kandidat novelty basis pada material kedokteran gigi: studi eksperimental. Padj J of Dent Res and Stud. 2023;7(2):198-205. https://doi.org/10.24198/pjdrs.v7i2.46092
Tantbirojn, D., Pfeifer, C.S., Amini, A.N. and Versluis, A. Simple Optical Method for Measuring Free Shrinkage. Dental Materials. 2015;31(11):1–8. https://doi.org/10.1016/j.dental.2015.08.150
Borges, A.L.S., Dal Piva, A.M.D.O., Moecke, S.E., de Morais, R.C. and Tribst, JPM. Polymerization Shrinkage, Hygroscopic Expansion, Elastic Modulus and Degree of Conversion of Different Composites for Dental Application. J of Composite Science. 2021; 5(12):1–18. https://doi.org/10.3390/jcs5120322
Schwendicke F, Kern M, Dorfer C. Influence of Using Different Bonding Systems and Composite on the Margin Integrity and the Mechanical Properties of Selectively Excavated Teeth In vitro. J of Dentistry. 2015;1-8. https://doi.org/10.1016/j.jdent.2014.12.014
Lassila L., Keulemans F., Vallittu PK., Garoushi S. Characterization of restorative short-fber reinforced dental composites,Dental Materials J.2020; 1-8 https://doi.org/10.4012/dmj.2019-088
Tsujimoto A, Barkmeier WW, Takamizawa T, Latta A, Miyazaki M. Mechanical properties, volumetric shrinkage and depth of cure of short fiber reinforced resin composite. Dental Materials J. 2015;35(3): 418–424. https://doi.org/10.4012/dmj.2015-280
Garoushi S, Gargoum A, Vallittu PK, Lassila L. Short fiber-reinforced composite restorations: A review of the current literature . J Invest Clin Dent. 2018;e12330. https://doi.org/10.1111/jicd.12330
Al-Zahawi AR, Rahman MSA, Ahmed SM. Efek of two composites on gingival microleakage of class II restoration using four different placement techniques (an in vitro study). International J of Recent Advances in Multidisciplinary research.2015;2(9):0727-31.
Garoushi S, Vallittu PK, Lassila L. Mechanical properties and wear of five commercial fiber-reinforced filling materials. Chin J Dent Res. 2017; 20:137–143. https://doi.org/10.3290/j.cjdr.a38768
Rodrigues RF, Senna SS, Soares AF, Mondelli RFL, Francisconi PAS, Borges AFS. Marginal adaptation in proximal cavities restored with composites and other materials. Braz Dent Sci. 2017;20(4). https://doi.org/10.14295/bds.2017.v20i4.1441
DOI: https://doi.org/10.24198/pjd.vol37no1.58864
Refbacks
- There are currently no refbacks.
Visitor Stat
Padjadjaran Journal of Dentistry is licensed under Creative Commons Attribution 4.0 International License