Reduction of Osx expression in the osseointegration process of dental implants with human adipose-derived mesenchymal stem cell intervention: an experimental study
Abstract
ABSTRACT
Introduction: Peri-implantitis, an inflammatory response affecting the hard and soft tissues surrounding a dental implant, ultimately leads to a loss of osseointegration. Human adipose-derived mesenchymal stem cells (hADMSCs), sourced from adipose tissue, have high biocompatibility and regenerative capacity, with advantages such as self-renewal, plasticity, and multilineage differentiation. Alveolar bone repair using hADMSC has been demonstrated in periodontitis animal models through the STRO-1, RUNX-2, Osx (Osterix), and COL-I pathways. This study utilized hADMSC intervention to analyze Osx’s impact on the osseointegration process of Y-TZP. Methods: This experimental study employed Wistar rats, divided into six treatment groups (three for week 1 and three for week 8) and one negative control group. The study design was a randomized post-test only control group. After Y-TZP scaffold implantation for one and eight weeks, histological analysis identified Osx expression on the mandibular bone surface of Rattus norvegicus albinus Wistar strain rats. Immunohistochemistry (IHC) results for Osx expression were compared using a One-Way ANOVA test for data analysis. Results: hADMSC cells reached optimal proliferation and maturity by passage 4, suitable for Y-TZP scaffold seeding. Characterization confirmed positive CD105, CD73, CD90, and negative CD45, CD34, CD14, CD19, HLA-DR expression. ANOVA (p<0.05) and post-hoc HSD showed significant Osterix differences, except between treatment groups P2, P3, and P4. Conclusion: Intervention with hADMSCs in Y-TZP dental implants can potentially overcome dental implant failure, as evidenced by a decrease in Osterix expression during osseointegration. This decreased Osterix expression facilitates osteoblast formation and promotes the homing of hADMSCs.
KEYWORDS: Osx expression, hADMSC, osteointegration, dental, implants
Keywords
Full Text:
PDFReferences
REFERENCES
Kino S, Tamada Y, Takeuchi K, Nakagomi A, Shiba K, Kusama T, et al. Exploring the relationship between oral health and multiple health conditions: An outcome-wide approach. J Prosthodont Res. 2024;68(3):415–24. https://doi.org/10.2186/jpr.JPR_D_23_00091
Sun AR, Sun Q, Wang Y, Hu L, Wu Y, Ma F, et al. Surface modifications of titanium dental implants with strontium eucommia ulmoides to enhance osseointegration and suppress inflammation. Biomater Res. 2023;27(1):1–13. https://doi.org/10.1186/s40824-023-00361-2
Scannapieco FA, Gershovich E. The prevention of periodontal disease—An overview. Periodontol 2000. 2020;84(1):9–13. https://doi.org/10.1111/prd.12330
Qian SJ, Liu B, Shi J, Zhang X, Deng K, Shen J, et al. Effects of dental implants and nutrition on elderly edentulous subjects: protocol for a factorial randomized clinical trial. Front Nutr. 2022;9(June):1–11. https://doi.org/10.3389/fnut.2022.930023
Trivedi A, Trivedi S, Narang H, Sarkar P, Sehdev B, Pendyala G, et al. Evaluation of pre and post-loading peri-implant crestal bone levels using cone-beam computed tomography: an in vivo study. J Contemp Dent Pract. 2022;23(1):79–82. https://doi.org/10.3389/fnut.2022.930023
Cimões R, Pinho RCM, Gurgel BCDV, Borges SB, Júnior EM, Marcantonio CC, et al. Impact of tooth loss due to periodontal disease on the prognosis of rehabilitation. Braz Oral Res. 2021;35(Supplement 2):1–15. https://doi.org/10.1590/1807-3107bor-2021.vol35.0101
Kheder W, Bouzid A, Venkatachalam T, Talaat IM, Elemam NM, Raju TK, et al. Titanium particles modulate lymphocyte and macrophage polarization in peri-implant gingival tissues. Int J Mol Sci. 2023;24(14). https://doi.org/10.3390/ijms241411644
Ramanauskaite A, Becker K, Wolfart S, Lukman F, Schwarz F. Efficacy of rehabilitation with different approaches of implant-supported full-arch prosthetic designs: A systematic review. J Clin Periodontol. 2022;49(S24):272–90. https://doi.org/10.1111/jcpe.13540
Tabrizi R, Zarchini R, Ozkan BT, Majdi S. Dental implant survival after postoperative infection. J Maxillofac Oral Surg [Internet]. 2022;21(3):796–801. Available from: https://doi.org/10.1007/s12663-020-01460-6
Nguyen TTH, Eo MY, Seo MH, Kim SM. Analysis of acute sinusitis-related early failed implant surface: a combined histological, electron microscopy, and X-ray spectroscopy approach. Maxillofac Plast Reconstr Surg. 2022;44(1). Available from: https://doi.org/10.1186/s40902-022-00346-6
Al-Mortadi N, Bataineh K, Albakri I. A three – dimensional finite element analysis of polyetheretherketone PEEK in dental implant prosthesis: a novel implant system. Open Dent J. 2022;16(1):1–10. https://doi.org/10.2174/18742106-v16-e2203040
Malm MO, Jemt T, Stenport VF. Patient factors related to early implant failures in the edentulous jaw: a large retrospective case–control study. Clin Implant Dent Relat Res. 2021;23(3):466–76. https://doi.org/10.1111/cid.13009
Tang L, Zhou H, Chen D, Xiang R, Tang J. Weighted gene coexpression network analysis identified IL2/STAT5 signaling pathway as an important determinant of peri-implantitis. Comput Math Methods Med. 2022;2022. https://doi.org/10.1155/2022/4202823
Radović M, Gavić L, Jerković D, Željezić D, Puizina J, Srzentić I, et al. Clinical prospective assessment of genotoxic effects of dental implants in gingival epithelial cells. Acta Stomatol Croat. 2022;56(3):222–34. https://doi.org/10.15644/asc56/3/1
Zhang Q, Guo S, Li Y, Li Z, Wang D, Zhang K. Analysis of risk indicators for implant failure in patients with chronic periodontitis. BMC Oral Health. 2024;24(1). https://doi.org/10.1186/s12903-024-04806-5
Song L, Feng Z, Zhou Q, Wu X, Zhang L, Sun Y, et al. Metagenomic analysis of healthy and diseased peri-implant microbiome under different periodontal conditions: a cross-sectional study. BMC Oral Health. 2024;24(1):1–17. https://doi.org/10.1186/s12903-023-03442-9
El Helaly RM, Elzehery RR, El-Emam OA, El Domiaty HA, Elbohy WR, Aboelenin HM, Salem NA. Genetic association between interleukin-10 gene rs1518111 and rs3021094 polymorphisms and risk of type 1 diabetes and diabetic nephropathy in Egyptian children and adolescents. Pediatr Diabetes. 2021;22(4):567-576. https://doi.org/10.1111/pedi.13201.
Matthes R, Jablonowski L, Miebach L, Pitchika V, Holtfreter B, Eberhard C, et al. In-vitro biofilm removal efficacy using water jet in combination with cold plasma technology on dental titanium implants. Int J Mol Sci. 2023;24(2). https://doi.org/10.3390/ijms24021606
Ding Z, Peng Q, Zuo J, Wang Y, Zhou H, Tang Z. Osteogenesis performance of boronized Ti6Al4V/HA composites prepared by microwave sintering: in vitro and in vivo studies. Materials (Basel). 2022;15(14). https://doi.org/10.3390/ma15144985
Liu X, Deng S, Xie J, Xu C, Huang Z, Huang B, et al. 2-DG Regulates immune imbalance on the titanium surface after debridement. Int J Mol Sci. 2023;24(14):1–15. https://doi.org/10.3390/ijms241411431
Bhattacharjee A, Pereira B, Soares P, Popat KC. Titania (TiO2) nanotube surfaces doped with zinc and strontium for improved cell compatibility. Nanoscale. 2024;16(26):12510–22. https://doi.org/10.1039/D4NR01123F
Santamaría Arrieta G, Rodríguez Sánchez F, Rodriguez-Andrés C, Barbier L, Arteagoitia I. The effect of preoperative clindamycin in reducing early oral implant failure: a randomised placebo-controlled clinical trial. Clin Oral Investig. 2023;27(3):1113–22. https://doi.org/10.1007/s00784-022-04701-9
Hadady H, Alam A, Khurana I, Mutreja I, Kumar D, Shankar MR, et al. Optimizing alkaline hydrothermal treatment for biomimetic smart metallic orthopedic and dental implants. J Mater Sci Mater Med. 2024;35(1). https://doi.org/10.1007/s10856-024-06794-y
Morejón-Alonso L, Bussulo MA, Fumero A, González-Ruíz JE, et al. Accelerated biomimetic nanosized apatite coatings deposition on alkali treated titanium. J Mater Res. 2022;37:4200–4212. https://doi.org/10.1557/s43578-022-00786-w
Pizarek JA, Fischer NG, Aparicio C. Immunomodulatory IL-23 receptor antagonist peptide nanocoatings for implant soft tissue healing. Dent Mater. 2023;39(2):204–16. https://doi.org/10.1016/j.dental.2023.01.001
Tambone E, Bonomi E, Ghensi P, Maniglio D, Ceresa C, Agostinacchio F, et al. Rhamnolipid coating reduces microbial biofilm formation on titanium implants: an in vitro study. BMC Oral Health. 2021;21(1):1–13. Available from: https://doi.org/10.1186/s12903-021-01412-7
Huang P, Chen X, Chen Z, Chen M, He J, Peng L. Efficacy of Er:YAG laser irradiation for decontamination and its effect on biocompatibility of different titanium surfaces. BMC Oral Health. 2021;21(1):1–12. https://doi.org/10.1186/s12903-021-02006-z
Korsch M, Marten SM, Stoll D, Prechtl C, Dötsch A. Microbiological findings in early and late implant loss: an observational clinical case-controlled study. BMC Oral Health. 2021;21(1):1–11. https://doi.org/10.1186/s12903-021-01439-w
Yao L, Al-Bishari AM, Shen J, Wang Z, Liu T, Sheng L, et al. Osseointegration and anti-infection of dental implant under osteoporotic conditions promoted by gallium oxide nano-layer coated titanium dioxide nanotube arrays. Ceram Int. 2023;49(14):22961–9. https://doi.org/10.1016/j.ceramint.2023.04.121
do Nascimento M, Brito TO, Lima AM, Elias CN. Protein interactions with osseointegrable titanium implants. Brazilian J Oral Sci. 2022;22:1–15. https://doi.org/10.20396/bjos.v22i00.8668749
Sandra Sari D, Martin M, Maduratna E, Basuki Notobroto H, Mahyudin F, Sudiana K, et al. Combination adipose-derived mesenchymal stem cells-demineralized dentin matrix increase bone marker expression in periodontitis rats. Saudi Dent J [Internet]. 2023;35(8):960–8. https://doi.org/10.1016/j.sdentj.2023.07.019
Tan X, Zhao Y, Lu Y, Yu P, Mei Z, Yu H. Physical and biological implications of accelerated aging on stereolithographic additive-manufactured zirconia for dental implant abutment. J Prosthodont Res. 2022;66(4):600–9. https://doi.org/10.2186/jpr.JPR_D_21_00240
Wang B, Xie X, Jiang W, Zhan Y, Zhang Y, Guo Y, et al. Osteoinductive micro-nano guided bone regeneration membrane for in situ bone defect repair. Stem Cell Res Ther. 2024;15(1):1–15. https://doi.org/10.1186/s13287-024-03745-w
Kollek NJ, Pérez-Albacete Martínez C, Granero Marín JM, Maté Sánchez de Val JE. Prospective Clinical Study with New Materials for Tissue Regeneration: A Study in Humans. Eur J Dent. 2023;17(3):727-734. https://doi.org/10.1055/s-0042-1753453
Grassi A, Monica D, Minetti E, Ballini A, Gianfreda F, Bollero P, et al. Innovative alveolar ridge preservation surgical technique with immediate dental implant placement: a retrospective case report of 1-year follow-up. Eur J Dent. 2024;18(1):408–14. https://doi.org/10.1055/s-0043-1772676
Fayed O, Van Griensven M, Tahmasebi Birgani Z, Plank C, Balmayor ER. Transcript-activated coatings on titanium mediate cellular osteogenesis for enhanced osteointegration. Mol Pharm. 2021;18(3):1121–37. https://doi.org/10.1021/acs.molpharmaceut.0c01042
Garcia Gómez-Heras S, Garcia-Arranz M, Vega-Clemente L, Olivera-Salazar R, Vélez Pinto JF, Fernández-García M, et al. Study of the effect of wild-type and transiently expressing CXCR4 and IL-10 Mesenchymal stromal cells in a mouse model of peritonitis. Int J Mol Sci. 2024;25(1):520. https://doi.org/10.3390/ijms25010520
Tribst JPM, de Morais DC, de Matos JDM, Lopes G da RS, Dal Piva AM de O, Borges ALS, et al. Influence of framework material and posterior implant angulation in full-arch all-on-4 implant-supported prosthesis stress concentration. Dent J. 2022;10(1):12. https://doi.org/10.3390/dj10010012
Elraggal A, Abdelraheem IM, Watts DC, Roy S, Dommeti VK, Alshabib A, et al. Biomechanical reinforcement by CAD-CAM materials affects stress distributions of posterior composite bridges: 3D finite element analysis. Dent Mater [Internet]. 2024;40(5):869–77. https://doi.org/10.1016/j.dental.2024.04.001
Souza ILM, Suzukawa AA, Josino R, Marcon BH, Robert AW, Shigunov P, et al. Cellular In Vitro Responses Induced by Human Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles Obtained from Suspension Culture. Int J Mol Sci. 2024;25(14):7605. https://doi.org/10.3390/ijms25147605
Kim M, Wang X, Li Y, Lin Z, Collins CP, Liu Y, et al. Personalized composite scaffolds for accelerated cell- and growth factor-free craniofacial bone regeneration. Bioact Mater [Internet]. 2024;41(January):427–39. https://doi.org/10.1016/j.bioactmat.2024.07.029
Abdollahi A, Aghayan HR, Mousivand Z, Motasadizadeh H, Maghsoudian S, Abdorashidi M, et al. Chitosan based extruded nanofibrous bioscaffold for local delivery of mesenchymal stem cells to improve diabetic wound healing. Stem Cell Res Ther [Internet]. 2024;15(1):262. https://doi.org/10.1186/s13287-024-03772-7
Fazal N, Khawaja H, Naseer N, Khan AJ, Latief N. Daphne mucronata enhances cell proliferation and protects human adipose stem cells against monosodium iodoacetate induced oxidative stress in vitro. Adipocyte. 2020;9(1):495–508. https://doi.org/10.1080/21623945.2020.1812242
Andrique C, Bonnet AL, Dang J, Lesieur J, Krautzberger AM, Baroukh B, et al. Vasorin as an actor of bone turnover? J Cell Physiol. 2024;239(6):e31257. https://doi.org/10.1002/jcp.31257
Sabatelli S, Scarpa ES, Giuliani A, Giordani C, Sabbatinelli J, Rippo MR, et al. Pro-osteogenic effect of the nutraceutical blastimin complex® in women with osteoporosis or osteopenia: an open intervention clinical trial. Int J Mol Sci. 2024;25(16):8565. https://doi.org/10.3390/ijms25168565
Cao Y, Boss AL, Bolam SM, Munro JT, Crawford H, Dalbeth N, Poulsen RC, Matthews BG. In Vitro Cell Surface Marker Expression on Mesenchymal Stem Cell Cultures does not Reflect Their Ex Vivo Phenotype. Stem Cell Rev Rep. 2024;20(6):1656-1666. https://doi.org/10.1007/s12015-024-10743-1
Huang C, Shi S, Qin M, Rong X, Ding Z, Fu X, et al. A composite hydrogel functionalized by borosilicate bioactive glasses and VEGF for critical-size bone regeneration. Adv Sci. 2024;11(26):1–18. https://doi.org/10.1002/advs.202400349
Wei L, Wu S, Kuss M, Jiang X, Sun R, Reid P, et al. 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering. Bioact Mater. 2019;4(July 2019):256–60. https://doi.org/10.1016/j.bioactmat.2019.09.001
Dewey MJ, Nosatov A V., Subedi K, Shah R, Jakus A, Harley BAC. Inclusion of a 3D-printed hyperelastic bone mesh improves mechanical and osteogenic performance of a mineralized collagen scaffold. Acta Biomater. 2021;121:224–36. Available from: https://doi.org/10.1016/j.actbio.2020.11.028
Saalbach A, Stein M, Lee S, Krügel U, Haffner-Luntzer M, Krohn K, et al. Bone quality relies on hyaluronan synthesis – Insights from mice with complete knockout of hyaluronan synthase expression. Matrix Biol Plus [Internet]. 2024;24(August):100163. https://doi.org/10.1016/j.mbplus.2024.100163
Wagener N, Lehmann W, Weiser L, Jäckle K, Di Fazio P, Schilling AF, et al. Psychostimulants modafinil, atomoxetine and guanfacine impair bone cell differentiation and MSC migration. Int J Mol Sci. 2022;23(18). https://doi.org/10.3390/ijms231810257
Subu Taopan HHM, Annisa Dewi FN, Mariya S, Darusman H, Permanawati P, Sajuthi D, et al. Characterization of mesenchymal stem cells from white adipose tissue of macaca fascicularis. J Kedokt Hewan - Indones J Vet Sci. 2021;15(4):112–7. https://doi.org/10.21157/j.ked.hewan.v15i4.18203
Sandra Sari D, Martin M, Maduratna E, Basuki Notobroto H, Mahyudin F, Sudiana K, et al. Combinationadipose-derived mesenchymal stem cells-demineralized dentin matrix increase bone marker expression in periodontitis rats. Saudi Dent J. 2023;35(8):960–8. https://doi.org/10.1016/j.sdentj.2023.07.019
DOI: https://doi.org/10.24198/pjd.vol37no2.62084
Refbacks
- There are currently no refbacks.
All publications by the Universitas Padjadjaran [e-ISSN: 2549-6212, p-ISSN: 1979-0201] are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License .





.png)
