The number of osteoblasts and osteoclasts in bone remodeling of bone defects caused by peri-implantitis using Anadara granosa bone graft: an experimental study

Vivin Ariestania, Nike Hendrijantini, Chiquita Prahasanti, Hansen Kurniawan, Meinar Nur Ashrin, Chaterina Diyah Nanik, Anindita Apsari, Rizko Wira Artha Megantara, Rima Parwati Sari, eddy Hermanto, Bunga Fauzia, Miwa Matsuyama

Abstract


Introduction: Peri-implantitis treatment aims to replace the damaged bone with new and healthy tissue during bone remodeling process. Bone grafts are materials used to stimulate the formation of new bone. Bone graft material derived from Anadara granosa (AG) can be synthesized into hydroxyapatite–tricalcium phosphate (HA-TCP) at a 70:30 ratio, which supports bone regeneration, as indicated by an increase in osteoblast numbers and decrease in osteoclast numbers. This study aims to analyze the effectiveness of Anadara granosa bone graft in the number of osteoblasts and osteoclasts during bone remodeling process. Methods: This study employed an experimental design with a post-test only control group. A total of 84 mice were divided into 12 groups (7 mice per group): negative control (K−), positive control (K+), and treatment group (P), each observed on days 14 and 28. Histological analysis was performed to count osteoblasts and osteoclasts. Data were analyzed using one-way ANOVA. Results: The number of osteoclasts was significantly reduced in the treatment groups (P14: 7.00 ± 1.528; P28: 6.57 ± 1.512) compared to the positive controls (K+14: 13.86 ± 2.410; K+28: 14.29 ± 1.496). On the contrary, the number of osteoblasts increased in the treatment groups (P14: 7.14 ± 1.676; P28: 8.57 ± 1.272) compared to the positive controls (K+14: 2.57 ± 1.512; K+28: 3.86 ± 1.574). Statistical analysis indicated that osteoblasts showed significant differences after AG treatment (p<0.05), and the ANOVA test showed significant differences in osteoclast number after AG treatment (p<0.05).      Conclusion: The number of osteoblasts increases while the number of osteoclast reduces in bone remodelling of bone defect caused by peri-implantitis using AG bone graft.

Keywords


Bone graft , anadara granosa, peri-implantitis, osteoblast, osteoclast

Full Text:

PDF

References


Vargas, G., Silva, D., Santos, F. T., & Junior, S. A. (2019). The importance of prosthetic planning for implant-supported dentures in esthetic zones: A case report. Int J Surg Case Rep, 54, 15–19. https://doi.org/10.1016/j.ijscr.2018.11.059

Tobias, G., Chackartchi, T., Haim, D., Mann, J., & Findler, M. (2025). Dental implant survival rates: Comprehensive insights from a large-scale electronic dental registry. J. Funct. Biomater, 16(2), 60. https://doi.org/10.3390/jfb16020060

Galarraga-Vinueza, M. E., Pagni, S., Finkelman, M., Schoenbaum, T., & Chambrone, L. (2025). Prevalence, incidence, systemic, behavioral, and patient-related risk factors and indicators for peri-implant diseases: An AO/AAP systematic review and meta-analysis. J. Periodontol, 96(6), 587–633. https://doi.org/10.1002/JPER.24-0154

Feng, Z., Zhu, J., Zhang, L., Li, C., Su, D., Wang, H., Yu, Y., & Song, L. (2024). Microbiological and functional traits of peri-implant mucositis and correlation with disease severity. mSphere, 9, e00059-24. https://doi.org/10.1128/msphere.00059-24

Hienz, S. A., Paliwal, S., & Ivanovski, S. (2015). Mechanisms of bone resorption in periodontitis. J. Immunol. Res, 2015, 615486. https://doi.org/10.1155/2015/615486

Hermanto, E., Sari, R. P., Imaniar, A. C. D., & Anggoro, K. (2017). Grafting effectiveness of Anadara granosa shell combined with Sardinella longiseps gel on the number of osteoblast–osteoclast cells. Dent J (Majalah Kedokteran Gigi), 50(3), 138–143. https://doi.org/10.20473/j.djmkg.v50.i3.p138-143

Hendrijantini, N., Kuntjoro, M., Agustono, B., Sitalaksmi, R. M., Ari, D. A. M., Theodora, M., et al. (2023). Human umbilical cord mesenchymal stem cells induction in peri-implantitis Rattus norvegicus accelerates and enhances osteogenesis activity and implant osseointegration. Saudi Dent. J, 35(2), 147–153. https://doi.org/10.1016/j.sdentj.2023.01.003

Mordini, L., Sun, N., Chang, N., De Guzman, J. P., Generali, L., & Consolo, U. (2021). Peri-implantitis regenerative therapy: A review. Biology, 10(8), 773. https://doi.org/10.3390/biology10080773

Oktawati, S., Mappangara, S., Chandra, H., Achmad, H., Raoda, S., Ramadhan, J., Dwipa, G., & Yudin, M. (2021). Effectiveness of nacre pearl shell (Pinctada maxima) as bone graft for periodontal bone remodeling. Annals of the Romanian Society for Cell Biology, 25(3), 8663–8678.

Gou, M., Wang, H., Xie, H., & Song, H. (2024). Macrophages in guided bone regeneration: Potential roles and future directions. Frontiers in Immunology, 15, 1396759. https://doi.org/10.3389/fimmu.2024.1396759

Qu, Z., Zhao, S., Zhang, Y., Wang, X., & Yan, L. (2024). Natural compounds for bone remodeling: Targeting osteoblasts and relevant signaling pathways. Biomedicine & Pharmacotherapy, 180, 117490. https://doi.org/10.1016/j.biopha.2024.117490

Siswanto, S., Hikmawati, D., Aminatun, A., & Ichsan, M. Z. (2019). Hydroxyapatite-collagen composite made from coral and chicken claws for bone implant application. Materials Science Forum, 966, 145–150. https://doi.org/10.4028/www.scientific.net/MSF.966.145

Afriani, F., Siswoyo, A., Hudatwi, M., Zaitun, & Tiandho, Y. (2020). Hydroxyapatite from natural sources: Methods and its characteristics. IOP Conference Series: Earth and Environmental Science, 599(1), 012055. https://doi.org/10.1088/1755-1315/599/1/012055

Azisa, Y., Jamarun, N., Zultiniara, Arief, S., & Nur, H. (2015). Synthesis of hydroxyapatite by hydrothermal method from cockle shell (Anadara granosa). Journal of Chemical and Pharmaceutical Research, 7(5), 798–804.

Mtavangu, S. G., Mahene, W., Machunda, R. L., van der Bruggen, B., & Njau, K. N. (2022). Cockle (Anadara granosa) shells-based hydroxyapatite and its potential for defluoridation of drinking water. Results in Engineering, 13, 100379. https://doi.org/10.1016/j.rineng.2022.100379

Dewi, N., Rahmadella, A., Hatta, I., Apriasari, M. L., & Putri, D. K. T. (2024). Antibacterial activity of nano-hydroxyapatite paste of snakehead fish bone against S. mutans: An in vitro study. Padjadjaran J. Dent, 36(1), 9. https://doi.org/10.24198/pjd.vol36no1.51018

Ariestania, V., Hendrijantini, N., Prahasanti, C., Prasetyo, E., Kuntjoro, M., & Sari, R. P., et al. (2022). Cytotoxicity of HA-TCP scaffold on human umbilical cord mesenchymal stem cells using MTT assay. IJIE, 14(2). https://doi.org/10.30880/ijie.2022.14.02.012

Ielo, I., Calabrese, G., De Luca, G., & Conoci, S. (2022). Recent advances in hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics. Int. J. Mol. Sci, 23(17), 9721. https://doi.org/10.3390/ijms23179721

Henry, J. P., & Bordoni, B. (2025). Histology, osteoblasts. In StatPearls. StatPearls Publishing.

Sari, R. P., & Kurniawan, H. (2019). Effectiveness of Anadara granosa shell–Stichopus hermanni granules at accelerating woven bone formation fourteen days after tooth extraction. Dent J, 52(4), 177–182. https://doi.org/10.20473/j.djmkg.v52.i4.p177-182

Omi, M., & Mishina, Y. (2022). Roles of osteoclasts in alveolar bone remodeling. Genesis, 60(8–9). https://doi.org/10.1002/dvg.23490

Kitaura, H., Marahleh, A., Ohori, F., et al. (2020). Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int. J. Mol. Sci, 21(14), 5169. https://doi.org/10.3390/ijms21145169

Zhao, H. (2012). Membrane trafficking in osteoblasts and osteoclasts: New avenues for understanding and treating skeletal diseases. Traffic, 13(10), 1307–1314. https://doi.org/10.1111/j.1600-0854.2012.01395.x

Sari, R. P., Revianti, S., Andriani, D., et al. (2021). The effect of Anadara granosa shell–Stichopus hermanni scaffold on CD44 and IL-10 expression to decrease osteoclasts in socket healing. Eur. J. Dent, 15(2), 228–235. https://doi.org/10.1055/s-0040-1719215

Ferdynanto, R. A., Dharmayanti, P. E. S., Dewi, P. T. K., & Prananingrum, W. (2018). The effect of various concentrations of HA-TCP derived from cockle shell synthesis on scaffold porosity. Dent J, 51(3), 114–118. https://doi.org/10.20473/j.djmkg.v51.i3.p114-118

Deng, M., Tan, J., Dai, Q., Luo, F., & Xu, J. (2021). Macrophage-mediated bone formation in scaffolds modified with MSC-derived extracellular matrix is dependent on the migration inhibitory factor signaling pathway. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.714011

Rachman, A., Arfiyanti, R., & Rahmana, M. D. (2025). Reduction of Osx expression in the osseointegration process of dental implants with human adipose-derived mesenchymal stem cell intervention: An experimental study. Padjadjaran J. Dent, 37(2), 142–154. https://doi.org/10.24198/pjd.vol37no2.62084

Fernandes, M. H., & Gomes, P. S. (2016). Bone cells dynamics during peri-implantitis: A theoretical analysis. JOMR, 7(3), e6. https://doi.org/10.5037/jomr.2016.7306

Hafizha, N. L., Safitri, J. A., Ulfa, R., Khalid, I., Agung, N. P., Makmur, A., & Fitriana, R. (2025). Serum IL-6 as a marker of immuno-inflammatory response to Zn–Mg alloy implants in porcine (Sus scrofa). IJTVBR, 10(1), 16–21.

Khodaei, T., Schmitzer, E., Suresh, A. P., & Acharya, A. P. (2023). Immune response differences in degradable and non-degradable alloy implants. Bioactive Materials, 24, 153–170. https://doi.org/10.1016/j.bioactmat.2022.12.012

Zheng, H., Shang, C., Li, P., Zhao, W., Niu, Y., Pan, S., & Zhang, S. (2025). The effects of magnesium-containing coatings on the healing of soft tissues surrounding oral titanium abutments: A narrative review. Frontiers in Dental Medicine, 6, 1638027. https://doi.org/10.3389/fdmed.2025.1638027

Amara, H. B., Martinez, D. C., Shah, F. A., Loo, A. J., Emanuelsson, L., Norlindh, B., et al. (2023). Magnesium implant degradation provides immunomodulatory and proangiogenic effects and attenuates peri-implant fibrosis in soft tissues. Bioactive Materials, 26, 353–369. https://doi.org/10.1016/j.bioactmat.2023.02.014

MacLeod, A. S., & Mansbridge, J. N. (2016). The innate immune system in acute and chronic wounds. Advances in Wound Care, 5(2), 65–78. https://doi.org/10.1089/wound.2014.0608

Sheen, J. R., & Garla, V. V. (2019). Fracture healing overview. StatPearls. https://www.ncbi.nlm.nih.gov/pubmed/31869142

Plikus, M. V., Wang, X., Sinha, S., et al. (2021). Fibroblasts: Origins, definitions, and functions in health and disease. Cell, 184(15), 3852–3872. https://doi.org/10.1016/j.cell.2021.06.024

Rowe, P., Koller, A., & Sharma, S. (2025). Physiology, bone remodeling. In StatPearls. StatPearls Publishing.

Lee, S., Kim, J. H., Kim, M., et al. (2023). Exploring the anti-osteoporotic potential of daucosterol: Impact on osteoclast and osteoblast activities. Int. J. Mol. Sci , 24(22), 16465. https://doi.org/10.3390/ijms242216465

Xu, J., Yu, L., Liu, F., Wan, L., & Deng, Z. (2023). The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: A review. Frontiers in Immunology, 14, 1222129. https://doi.org/10.3389/fimmu.2023.1222129

Chen, Y., Liu, Z., Lin, Z., et al. (2023). The effect of Staphylococcus aureus on innate and adaptive immunity and potential immunotherapy for S. aureus-induced osteomyelitis. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1219895

Hu, Y., Huang, J., Chen, C., et al. (2022). Strategies of macrophages to maintain bone homeostasis and promote bone repair: A narrative review. J. Funct. Biomater, 14(1), 18. https://doi.org/10.3390/jfb14010018

Trivedi, T., Pagnotti, G. M., Guise, T. A., & Mohammad, K. S. (2021). The role of TGF-β in bone metastases. Biomolecules, 11(11), 1643. https://doi.org/10.3390/biom11111643

Saraswati, W., Soetojo, A., Dhaniar, N., et al. (2023). CaCO₃ from Anadara granosa shell as reparative dentin inducer in odontoblast pulp cells: In-vivo study. J Oral Biol Craniofac Res, 13(2), 164–168. https://doi.org/10.1016/j.jobcr.2023.01.003

Krzyszczyk, P., Schloss, R., Palmer, A., & Berthiaume, F. (2018). The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.00419

Sa’diyah, J. S., Septiana, D. A., Farih, N. N., & Ningsih, J. R. (2020). Effect of 5% binahong (Anredera cordifolia) leaf extract in increasing osteoblasts during post-extraction healing in Wistar rats. J Ked Gigi Universitas Padjadjaran, 32(1), 9. https://doi.org/10.24198/jkg.v32i1.26885

Sari, R. P., Hermanto, E., Divilia, D., Candra, I., Kuncoro, W., & Liswanti, T. (2016). Effects of Anadara granosa shell combined with Sardinella longiceps oil on osteoblast proliferation in bone defect healing. Dent J, 49(1), 27. https://doi.org/10.20473/j.djmkg.v49.i1.p27-31

Kenkre, J. S., & Bassett, J. H. D. (2018). The bone remodelling cycle. Annals of Clinical Biochemistry, 55(3), 308–327. https://doi.org/10.1177/0004563218759371

Zhu, W., Wang, W., Yang, X., Ran, C., Zhang, T., Huang, S., et al. (2025). Research progress on osteoclast regulation by biodegradable magnesium and its mechanism. Regenerative Biomaterials, 12, rbaf026. https://doi.org/10.1093/rb/rbaf026




DOI: https://doi.org/10.24198/pjd.vol37no3.64295

Refbacks

  • There are currently no refbacks.


 

Creative Commons License All publications by the Universitas Padjadjaran [e-ISSN: 2549-6212, p-ISSN: 1979-0201] are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License .

Visitor Stat