The number of osteoblasts and osteoclasts in bone remodeling of bone defects caused by peri-implantitis using Anadara granosa bone graft: an experimental study
Abstract
Keywords
Full Text:
PDFReferences
Vargas, G., Silva, D., Santos, F. T., & Junior, S. A. (2019). The importance of prosthetic planning for implant-supported dentures in esthetic zones: A case report. Int J Surg Case Rep, 54, 15–19. https://doi.org/10.1016/j.ijscr.2018.11.059
Tobias, G., Chackartchi, T., Haim, D., Mann, J., & Findler, M. (2025). Dental implant survival rates: Comprehensive insights from a large-scale electronic dental registry. J. Funct. Biomater, 16(2), 60. https://doi.org/10.3390/jfb16020060
Galarraga-Vinueza, M. E., Pagni, S., Finkelman, M., Schoenbaum, T., & Chambrone, L. (2025). Prevalence, incidence, systemic, behavioral, and patient-related risk factors and indicators for peri-implant diseases: An AO/AAP systematic review and meta-analysis. J. Periodontol, 96(6), 587–633. https://doi.org/10.1002/JPER.24-0154
Feng, Z., Zhu, J., Zhang, L., Li, C., Su, D., Wang, H., Yu, Y., & Song, L. (2024). Microbiological and functional traits of peri-implant mucositis and correlation with disease severity. mSphere, 9, e00059-24. https://doi.org/10.1128/msphere.00059-24
Hienz, S. A., Paliwal, S., & Ivanovski, S. (2015). Mechanisms of bone resorption in periodontitis. J. Immunol. Res, 2015, 615486. https://doi.org/10.1155/2015/615486
Hermanto, E., Sari, R. P., Imaniar, A. C. D., & Anggoro, K. (2017). Grafting effectiveness of Anadara granosa shell combined with Sardinella longiseps gel on the number of osteoblast–osteoclast cells. Dent J (Majalah Kedokteran Gigi), 50(3), 138–143. https://doi.org/10.20473/j.djmkg.v50.i3.p138-143
Hendrijantini, N., Kuntjoro, M., Agustono, B., Sitalaksmi, R. M., Ari, D. A. M., Theodora, M., et al. (2023). Human umbilical cord mesenchymal stem cells induction in peri-implantitis Rattus norvegicus accelerates and enhances osteogenesis activity and implant osseointegration. Saudi Dent. J, 35(2), 147–153. https://doi.org/10.1016/j.sdentj.2023.01.003
Mordini, L., Sun, N., Chang, N., De Guzman, J. P., Generali, L., & Consolo, U. (2021). Peri-implantitis regenerative therapy: A review. Biology, 10(8), 773. https://doi.org/10.3390/biology10080773
Oktawati, S., Mappangara, S., Chandra, H., Achmad, H., Raoda, S., Ramadhan, J., Dwipa, G., & Yudin, M. (2021). Effectiveness of nacre pearl shell (Pinctada maxima) as bone graft for periodontal bone remodeling. Annals of the Romanian Society for Cell Biology, 25(3), 8663–8678.
Gou, M., Wang, H., Xie, H., & Song, H. (2024). Macrophages in guided bone regeneration: Potential roles and future directions. Frontiers in Immunology, 15, 1396759. https://doi.org/10.3389/fimmu.2024.1396759
Qu, Z., Zhao, S., Zhang, Y., Wang, X., & Yan, L. (2024). Natural compounds for bone remodeling: Targeting osteoblasts and relevant signaling pathways. Biomedicine & Pharmacotherapy, 180, 117490. https://doi.org/10.1016/j.biopha.2024.117490
Siswanto, S., Hikmawati, D., Aminatun, A., & Ichsan, M. Z. (2019). Hydroxyapatite-collagen composite made from coral and chicken claws for bone implant application. Materials Science Forum, 966, 145–150. https://doi.org/10.4028/www.scientific.net/MSF.966.145
Afriani, F., Siswoyo, A., Hudatwi, M., Zaitun, & Tiandho, Y. (2020). Hydroxyapatite from natural sources: Methods and its characteristics. IOP Conference Series: Earth and Environmental Science, 599(1), 012055. https://doi.org/10.1088/1755-1315/599/1/012055
Azisa, Y., Jamarun, N., Zultiniara, Arief, S., & Nur, H. (2015). Synthesis of hydroxyapatite by hydrothermal method from cockle shell (Anadara granosa). Journal of Chemical and Pharmaceutical Research, 7(5), 798–804.
Mtavangu, S. G., Mahene, W., Machunda, R. L., van der Bruggen, B., & Njau, K. N. (2022). Cockle (Anadara granosa) shells-based hydroxyapatite and its potential for defluoridation of drinking water. Results in Engineering, 13, 100379. https://doi.org/10.1016/j.rineng.2022.100379
Dewi, N., Rahmadella, A., Hatta, I., Apriasari, M. L., & Putri, D. K. T. (2024). Antibacterial activity of nano-hydroxyapatite paste of snakehead fish bone against S. mutans: An in vitro study. Padjadjaran J. Dent, 36(1), 9. https://doi.org/10.24198/pjd.vol36no1.51018
Ariestania, V., Hendrijantini, N., Prahasanti, C., Prasetyo, E., Kuntjoro, M., & Sari, R. P., et al. (2022). Cytotoxicity of HA-TCP scaffold on human umbilical cord mesenchymal stem cells using MTT assay. IJIE, 14(2). https://doi.org/10.30880/ijie.2022.14.02.012
Ielo, I., Calabrese, G., De Luca, G., & Conoci, S. (2022). Recent advances in hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics. Int. J. Mol. Sci, 23(17), 9721. https://doi.org/10.3390/ijms23179721
Henry, J. P., & Bordoni, B. (2025). Histology, osteoblasts. In StatPearls. StatPearls Publishing.
Sari, R. P., & Kurniawan, H. (2019). Effectiveness of Anadara granosa shell–Stichopus hermanni granules at accelerating woven bone formation fourteen days after tooth extraction. Dent J, 52(4), 177–182. https://doi.org/10.20473/j.djmkg.v52.i4.p177-182
Omi, M., & Mishina, Y. (2022). Roles of osteoclasts in alveolar bone remodeling. Genesis, 60(8–9). https://doi.org/10.1002/dvg.23490
Kitaura, H., Marahleh, A., Ohori, F., et al. (2020). Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int. J. Mol. Sci, 21(14), 5169. https://doi.org/10.3390/ijms21145169
Zhao, H. (2012). Membrane trafficking in osteoblasts and osteoclasts: New avenues for understanding and treating skeletal diseases. Traffic, 13(10), 1307–1314. https://doi.org/10.1111/j.1600-0854.2012.01395.x
Sari, R. P., Revianti, S., Andriani, D., et al. (2021). The effect of Anadara granosa shell–Stichopus hermanni scaffold on CD44 and IL-10 expression to decrease osteoclasts in socket healing. Eur. J. Dent, 15(2), 228–235. https://doi.org/10.1055/s-0040-1719215
Ferdynanto, R. A., Dharmayanti, P. E. S., Dewi, P. T. K., & Prananingrum, W. (2018). The effect of various concentrations of HA-TCP derived from cockle shell synthesis on scaffold porosity. Dent J, 51(3), 114–118. https://doi.org/10.20473/j.djmkg.v51.i3.p114-118
Deng, M., Tan, J., Dai, Q., Luo, F., & Xu, J. (2021). Macrophage-mediated bone formation in scaffolds modified with MSC-derived extracellular matrix is dependent on the migration inhibitory factor signaling pathway. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.714011
Rachman, A., Arfiyanti, R., & Rahmana, M. D. (2025). Reduction of Osx expression in the osseointegration process of dental implants with human adipose-derived mesenchymal stem cell intervention: An experimental study. Padjadjaran J. Dent, 37(2), 142–154. https://doi.org/10.24198/pjd.vol37no2.62084
Fernandes, M. H., & Gomes, P. S. (2016). Bone cells dynamics during peri-implantitis: A theoretical analysis. JOMR, 7(3), e6. https://doi.org/10.5037/jomr.2016.7306
Hafizha, N. L., Safitri, J. A., Ulfa, R., Khalid, I., Agung, N. P., Makmur, A., & Fitriana, R. (2025). Serum IL-6 as a marker of immuno-inflammatory response to Zn–Mg alloy implants in porcine (Sus scrofa). IJTVBR, 10(1), 16–21.
Khodaei, T., Schmitzer, E., Suresh, A. P., & Acharya, A. P. (2023). Immune response differences in degradable and non-degradable alloy implants. Bioactive Materials, 24, 153–170. https://doi.org/10.1016/j.bioactmat.2022.12.012
Zheng, H., Shang, C., Li, P., Zhao, W., Niu, Y., Pan, S., & Zhang, S. (2025). The effects of magnesium-containing coatings on the healing of soft tissues surrounding oral titanium abutments: A narrative review. Frontiers in Dental Medicine, 6, 1638027. https://doi.org/10.3389/fdmed.2025.1638027
Amara, H. B., Martinez, D. C., Shah, F. A., Loo, A. J., Emanuelsson, L., Norlindh, B., et al. (2023). Magnesium implant degradation provides immunomodulatory and proangiogenic effects and attenuates peri-implant fibrosis in soft tissues. Bioactive Materials, 26, 353–369. https://doi.org/10.1016/j.bioactmat.2023.02.014
MacLeod, A. S., & Mansbridge, J. N. (2016). The innate immune system in acute and chronic wounds. Advances in Wound Care, 5(2), 65–78. https://doi.org/10.1089/wound.2014.0608
Sheen, J. R., & Garla, V. V. (2019). Fracture healing overview. StatPearls. https://www.ncbi.nlm.nih.gov/pubmed/31869142
Plikus, M. V., Wang, X., Sinha, S., et al. (2021). Fibroblasts: Origins, definitions, and functions in health and disease. Cell, 184(15), 3852–3872. https://doi.org/10.1016/j.cell.2021.06.024
Rowe, P., Koller, A., & Sharma, S. (2025). Physiology, bone remodeling. In StatPearls. StatPearls Publishing.
Lee, S., Kim, J. H., Kim, M., et al. (2023). Exploring the anti-osteoporotic potential of daucosterol: Impact on osteoclast and osteoblast activities. Int. J. Mol. Sci , 24(22), 16465. https://doi.org/10.3390/ijms242216465
Xu, J., Yu, L., Liu, F., Wan, L., & Deng, Z. (2023). The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: A review. Frontiers in Immunology, 14, 1222129. https://doi.org/10.3389/fimmu.2023.1222129
Chen, Y., Liu, Z., Lin, Z., et al. (2023). The effect of Staphylococcus aureus on innate and adaptive immunity and potential immunotherapy for S. aureus-induced osteomyelitis. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1219895
Hu, Y., Huang, J., Chen, C., et al. (2022). Strategies of macrophages to maintain bone homeostasis and promote bone repair: A narrative review. J. Funct. Biomater, 14(1), 18. https://doi.org/10.3390/jfb14010018
Trivedi, T., Pagnotti, G. M., Guise, T. A., & Mohammad, K. S. (2021). The role of TGF-β in bone metastases. Biomolecules, 11(11), 1643. https://doi.org/10.3390/biom11111643
Saraswati, W., Soetojo, A., Dhaniar, N., et al. (2023). CaCO₃ from Anadara granosa shell as reparative dentin inducer in odontoblast pulp cells: In-vivo study. J Oral Biol Craniofac Res, 13(2), 164–168. https://doi.org/10.1016/j.jobcr.2023.01.003
Krzyszczyk, P., Schloss, R., Palmer, A., & Berthiaume, F. (2018). The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.00419
Sa’diyah, J. S., Septiana, D. A., Farih, N. N., & Ningsih, J. R. (2020). Effect of 5% binahong (Anredera cordifolia) leaf extract in increasing osteoblasts during post-extraction healing in Wistar rats. J Ked Gigi Universitas Padjadjaran, 32(1), 9. https://doi.org/10.24198/jkg.v32i1.26885
Sari, R. P., Hermanto, E., Divilia, D., Candra, I., Kuncoro, W., & Liswanti, T. (2016). Effects of Anadara granosa shell combined with Sardinella longiceps oil on osteoblast proliferation in bone defect healing. Dent J, 49(1), 27. https://doi.org/10.20473/j.djmkg.v49.i1.p27-31
Kenkre, J. S., & Bassett, J. H. D. (2018). The bone remodelling cycle. Annals of Clinical Biochemistry, 55(3), 308–327. https://doi.org/10.1177/0004563218759371
Zhu, W., Wang, W., Yang, X., Ran, C., Zhang, T., Huang, S., et al. (2025). Research progress on osteoclast regulation by biodegradable magnesium and its mechanism. Regenerative Biomaterials, 12, rbaf026. https://doi.org/10.1093/rb/rbaf026
DOI: https://doi.org/10.24198/pjd.vol37no3.64295
Refbacks
- There are currently no refbacks.
All publications by the Universitas Padjadjaran [e-ISSN: 2549-6212, p-ISSN: 1979-0201] are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License .





.png)
