Efektivitas daya hambat gel kitosan kepiting hitam (Scylla serrata) terhadap pertumbuhan Candida albicans secara in vitro : studi eksperimental

Muhammad Naufal Pradiva, Hendry Rusdy, Harry Agusnar

Abstract


ABSTRAK

Pendahuluan: Kitosan merupakan biomaterial polimer yang diperoleh dengan deasetilasi kitin yang banyak dimanfaatkan untuk berbagai macam produk olahan. Kitosan dapat menghambat pertumbuhan jamur Candida albicans yaitu salah satu jamur yang berperan dalam proses terjadinya karies gigi. Tujuan Penelitian ini adalah untuk menganalisis efektivitas gel kitosan kepiting hitam (Scylla serrata) dalam menghambat pertumbuhan Candida albicans. Metode: Penelitian ini menggunakan metode eksperimental laboratorium dengan desain kelompok kontrol post-test only. Sampel yang digunakan dalam penelitian ini adalah sediaan Candida albicans ATCC 10231. Penelitian dilakukan menggunakan metode disc diffusion method untuk menguji daya hambat gel kitosan kepiting hitam 0,5%, 1%, 1,5%, 2%, 2,5% terhadap Candida albicans. Teknik analisis data yang digunakan yaitu One-way ANOVA. Hasil: Daya hambat gel kitosan Scylla serrata dengan konsentrasi 0,5% tidak memiliki daya hambat terhadap Candida albicans. Namun berbeda dengan gel kitosan Scylla serrata dengan konsentrasi 1%, 1,5 %, 2 %, 2,5 % memiliki daya hambat terhadap Candida albicans. Daya hambat kelompok kontrol positif (ketoconazole) lebih efektif dalam menghambat Candida albicans dibandingkan dengan gel kitosan pada konsentrasi 1%, 1,5%, 2%, dan 2,5%. Simpulan: Gel kitosan yang berasal dari Scylla serrata memiliki kemampuan untuk menghambat pertumbuhan Candida albicans. Temuan ini mengindikasikan potensi gel kitosan sebagai agen antijamur yang efektif, yang dapat digunakan dalam pengembangan terapi untuk mengatasi infeksi jamur.

KATA KUNCI: Antijamur, Candida albicans, kitosan kepiting hitam (scylla serrata), kitin, karies 

Effectiveness of black crab (Scylla serrata) chitosan gel in inhibiting the growth of Candida albicans in vitro: experimental study 

ABSTRACT

Introduction: Chitosan is a polymer biomaterial obtained by deacetylation of chitin which is widely used for various processed products. Chitosan can inhibit the growth of Candida albicans, which is one of the fungi that play a role in the process of dental caries. The purpose of this study was to analyze the effectiveness of black crab (Scylla serrata) chitosan gel in inhibiting the growth of Candida albicans. Methods: This study used a laboratory experimental method with a posttest only control group design. The sample used in this study was Candida albicans ATCC 10231 preparation. The study was conducted using a disc diffusion method to test the inhibition of black crab chitosan gel 0.5%, 1%, 1.5%, 2%, 2.5% against Candida albicans. The data analysis technique used was One-way ANOVA. Results: The inhibition of Scylla serrata chitosan gel with a concentration of 0.5% has no inhibition against Candida albicans. However, it is different with Scylla serrata chitosan gel with a concentration of 1%, 1.5%, 2%, 2.5% has inhibition against Candida albicans. The inhibition of the positive control group (ketoconazole) was more effective in inhibiting Candida albicans than the chitosan gel at concentrations of 1%, 1.5%, 2%, and 2.5%. Conclusion: Chitosan gel derived from Scylla serrata has the ability to inhibit the growth of Candida albicans. This finding indicates the potential of chitosan gel as an effective antifungal agent, which can be used in the development of therapies to treat fungal infections.

KEY WORDS: Antifungal, Candida albicans, black crab chitosan (scylla serrata), chitin, caries


Keywords


Antijamur, Candida albicans, kitosan kepiting hitam (scylla serrata), kitin, karies ; Antifungal, Candida albicans, black crab chitosan (scylla serrata), chitin, caries

Full Text:

PDF

References


DAFTAR PUSTAKA

Iyer P. Oral Cavity is the Gateway to the Body: Role of Oral Health Professionals: A Narrative Review. J Calif Dent Assoc. 2023 Dec 31;51(1). DOI: https://doi.org/10.1080/19424396.2023.2193372

Yanto AF, Octavia M, Situmorang EUM. Perbandingan Efektivitas Antimikroba Nanopartikel Seng Oksida terhadap Candida albicans dengan Streptococcus mutans: Telaah Sistematik. Jurnal Kedokteran Meditek. 2023 May 22;29(2):203–9. DOI: https://doi.org/10.36452/jkdoktmeditek.v29i2.2575

Anil A, I. Ibraheem W, A. Meshni A, Preethanath R, Anil S. Demineralization and Remineralization Dynamics and Dental Caries. In 2022. DOI: https://doi.org/10.5772/intechopen.105847

Wasfi R, Abd El‐Rahman OA, Zafer MM, Ashour HM. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries‐inducing Streptococcus mutans. J Cell Mol Med. 2018 Mar 8;22(3):1972–83. DOI: https://doi.org/10.1111/jcmm.13496

Eidt G, Waltermann EDM, Hilgert JB, Arthur RA. Candida and dental caries in children, adolescents and adults: A systematic review and meta-analysis. Arch Oral Biol. 2020 Nov;119:104876. DOI: https://doi.org/10.1016/j.archoralbio.2020.104876

Nobile CJ, Johnson AD. Candida albicans Biofilms and Human Disease. Annu Rev Microbiol. 2015 Oct 15;69(1):71–92. DOI: https://doi.org/10.1146/annurev-micro-091014-104330

Vila T, Sultan AS, Montelongo-Jauregui D, Jabra-Rizk MA. Oral Candidiasis: A Disease of Opportunity. Journal of Fungi. 2020 Jan 16;6(1):15. DOI: https://doi.org/10.3390/jof6010015

Baharuddin S. Uji Efektivitas Antijamur Kitosan Cangkang Kepiting Bakau (Scylla sp) Terhadap Pertumbuhan Epidermophyton floccosum dan Candida albicans. Lumbung Farmasi: Jurnal Ilmu Kefarmasian. 2021 Jul 5;2(2):103. DOI: https://doi.org/10.31764/lf.v2i2.5492

Di Stefano M, Polizzi A, Santonocito S, Romano A, Lombardi T, Isola G. Impact of Oral Microbiome in Periodontal Health and Periodontitis: A Critical Review on Prevention and Treatment. Int J Mol Sci. 2022 May 5;23(9):5142. DOI: https://doi.org/10.3390/ijms23095142

Lynge Pedersen AM, Belstrøm D. The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent. 2019 Jan;80:S3–12. DOI: https://doi.org/10.1016/j.jdent.2018.08.010

Vila T, Sultan AS, Montelongo-Jauregui D, Jabra-Rizk MA. Oral Candidiasis: A Disease of Opportunity. Journal of Fungi. 2020 Jan 16;6(1):15. DOI: https://doi.org/10.3390/jof6010015

Mutiawati VK. Pemeriksaan mikrobiologi pada Candida albicans. Jurnal kedokteran syiah kuala [Internet]. 2016 [cited 2025 Jan 31];16(1):53–63. DOI: https://jurnal.usk.ac.id/JKS/article/view/5013

Mäkinen A, Nawaz A, Mäkitie A, Meurman JH. Role of Non-Albicans Candida and Candida Albicans in Oral Squamous Cell Cancer Patients. Journal of Oral and Maxillofacial Surgery. 2018 Dec;76(12):2564–71. DOI: https://doi.org/10.1016/j.joms.2018.06.012

Gulati M, Lohse MB, Ennis CL, Gonzalez RE, Perry AM, Bapat P, et al. In Vitro Culturing and Screening of Candida albicans Biofilms. Curr Protoc Microbiol. 2018 Aug 11;50(1). DOI: https://doi.org/10.1002/cpmc.60

Sudjarwo GW, Rosalia MS. Uji Aktivitas Anti Jamur Nanopartikel Kitosan Terhadap Jamur Candida albicans secara In Vitro. Prosiding Seminakel [Internet]. 2019 [cited 2025 Jan 31];50–7.

Ningsih SNR, Tania E, Azizah NN, Lutfiah SL, Gunarti NS. Aktivitas Antibakteri Kitosan dari Berbagai Jenis Bahan Baku Hewani: Review Journal. Jurnal Buana Farma. 2022 Dec 31;2(4):25–30. DOI: https://doi.org/10.36805/jbf.v2i4.576

Supotngarmkul A, Panichuttra A, Ratisoontorn C, Nawachinda M, Matangkasombut O. Antibacterial property of chitosan against <i>E. faecalis</i> standard strain and clinical isolates. Dent Mater J. 2020;39(3):456–63. DOI: https://doi.org/10.4012/dmj.2018-343

Sularsih S. Pengaruh viskositas kitosan gel terhadap penggunaannya di proses penyembuhan luka. J Mat Ked Gigi. 2013;2(1):60–7.

Feng P, Luo Y, Ke C, Qiu H, Wang W, Zhu Y, et al. Chitosan-Based Functional Materials for Skin Wound Repair: Mechanisms and Applications. Front Bioeng Biotechnol. 2021;9. DOI: https://doi.org/10.3389/fbioe.2021.650598

Gondim BLC, Castellano LRC, de Castro RD, Machado G, Carlo HL, Valença AMG, et al. Effect of chitosan nanoparticles on the inhibition of Candida spp. biofilm on denture base surface. Arch Oral Biol. 2018 Oct;94:99–107. DOI: https://doi.org/10.1016/j.archoralbio.2018.07.004

Yan D, Li Y, Liu Y, Li N, Zhang X, Yan C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules. 2021 Nov 25;26(23):7136. DOI: https://doi.org/10.3390/molecules26237136

Hakim E. Kitosan sebagai Bahan Potensial Antikaries. Jurnal Material Kedokteran Gigi [Internet]. 2024 [cited 2025 Jan 31];11(1):1–6.

Swastirani A, Marsudi FDM. The Effect of Chitosan-Gelfoam Cacao Pod Husk on Wound Epithelial Thickness in the Post-Extraction Tooth with Anticoagulant Therapy. Insisiva Dental Journal: Majalah Kedokteran Gigi Insisiva. 2022 May 28;11(1):26–33. DOI: https://doi.org/10.18196/di.v11i1.14408

Arias LS, Butcher MC, Short B, McKloud E, Delaney C, Kean R, et al. Chitosan Ameliorates Candida auris Virulence in a Galleria mellonella Infection Model. Antimicrob Agents Chemother. 2020 Jul 22;64(8).DOI: https://doi.org/10.1128/AAC.00476-20

Costa E, Silva S, Tavaria F, Pintado M. Antimicrobial and Antibiofilm Activity of Chitosan on the Oral Pathogen Candida albicans. Pathogens. 2014 Dec 11;3(4):908–19. DOI: https://doi.org/10.3390/pathogens3040908

Rabea EI, Badawy MEI, Steurbaut W, Stevens C V. In vitro assessment of N-(benzyl)chitosan derivatives against some plant pathogenic bacteria and fungi. Eur Polym J. 2009 Jan;45(1):237–45. DOI: http://dx.doi.org/10.1016/j.eurpolymj.2008.10.021

Gong W, Sun Y, Tu T, Huang J, Zhu C, Zhang J, et al. Chitosan inhibits Penicillium expansum possibly by binding to DNA and triggering apoptosis. Int J Biol Macromol. 2024 Feb;259:129113. DOI: https://doi.org/10.1016/j.ijbiomac.2023.129113

Permatasari FA, Yunita MN, Plumeriastuti H, Arimbi, Fikri F, Wibawati PA. Effect of shrimp shell chitosan on re-epithelialization of healing processes of excision wounds in white rats (Rattus norvegicus). In 2023. p. 040001. DOI: https://doi.org/10.1063/5.0118064

Zaid A, Sharshar A, Gaber M, AbdelRahman H. Effect of Chitosan Gel on Wound Healing: Experimental Study in Donkeys. Alex J Vet Sci. 2017;53(1):63. DOI: https://doi.org/10.5455/ajvs.259376

Zats JI, Gregory PK. Pharmaceutical Dosage Forms [Internet]. Lieberman HA, Rieger MM, Banker GS, editors. Vol. 2, Journal Of Pharmacy Science. CRC Press; 2020. DOI: https://www.taylorfrancis.com/books/9781000105209

Samudra KAG, Soulissa AG, Widyarman AS. Antibiofilm Efficacy of Black Tiger Shrimp (Penaeus monodon) Chitosan against Aggregatibacter actinomycetemcomitans and Treponema denticola. e-GiGi. 2022 Jun 6;10(2):162. DOI: https://doi.org/10.35790/eg.v10i2.39052

Magani AK, Tallei TE, Kolondam BJ. Uji Antibakteri Nanopartikel Kitosan terhadap Pertumbuhan Bakteri Staphylococcus aureus dan Escherichia coli. J Bios Logos. 2020 Jan 25;10(1):7. DOI: https://doi.org/10.35799/jbl.10.1.2020.27978

Akbar AF, Cahyaningrum SE. Characterization and Anti-Bacterial Activity Testing of the Nano Hydroxyapatite-Clove (Eugenia Caryophyllus) Against Streptococcus Mutans Bacteria. Indonesian Journal of Chemical Science. 2022 May 1;11(1):1–8. DOI: https://doi.org/10.15294/ijcs.v11i1.51037

Rabea EI, Badawy MET, Stevens C V., Smagghe G, Steurbaut W. Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules. 2003 Nov 1;4(6):1457–65.DOI: https://doi.org/10.1021/bm034130m

Wheeler RT, Kombe D, Agarwala SD, Fink GR. Dynamic, Morphotype-Specific Candida albicans β-Glucan Exposure during Infection and Drug Treatment. PLoS Pathog. 2008 Dec 5;4(12):e1000227. DOI: https://doi.org/10.1371/journal.ppat.1000227

Ramage G, Saville SP, Thomas DP, López-Ribot JL. Candida Biofilms: an Update. Eukaryot Cell. 2005 Apr;4(4):633–8. DOI: https://doi.org/10.1128/EC.4.4.633-638.2005

Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013 Feb 15;4(2):119–28. https://doi.org/10.4161/viru.22913

Brasselet C, Pierre G, Dubessay P, Dols-Lafargue M, Coulon J, Maupeu J, et al. Modification of Chitosan for the Generation of Functional Derivatives. Applied Sciences. 2019 Mar 29;9(7):1321. DOI: https://doi.org/10.3390/app9071321

Khan MUA, Iqbal I, Ansari MNM, Razak SIA, Raza MA, Sajjad A, et al. Development of Antibacterial, Degradable and pH-Responsive Chitosan/Guar Gum/Polyvinyl Alcohol Blended Hydrogels for Wound Dressing. Molecules. 2021 Sep 30;26(19):5937. DOI: https://doi.org/10.3390/molecules26195937

Ata S, Rasool A, Islam A, Bibi I, Rizwan M, Azeem MK, et al. Loading of Cefixime to pH sensitive chitosan based hydrogel and investigation of controlled release kinetics. Int J Biol Macromol. 2020 Jul;155:1236–44. DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.091

Iglesias N, Galbis E, Valencia C, De-Paz MV, Galbis J. Reversible pH-Sensitive Chitosan-Based Hydrogels. Influence of Dispersion Composition on Rheological Properties and Sustained Drug Delivery. Polymers (Basel). 2018 Apr 1;10(4):392. DOI: https://doi.org/10.3390/polym10040392




DOI: https://doi.org/10.24198/pjdrs.v9i1.61691

Refbacks

  • There are currently no refbacks.


       

      

  

Statistik Pengunjung

Creative Commons License
Padjadjaran Journal of Dental Researchers and Students dilisensikan di bawah Creative Commons Attribution 4.0 International License