Potensi Penerapan Teknologi Digital Twin pada Industri Pertanian dan Pangan di Indonesia: Sebuah Tinjauan Literatur

Thabed Tholib Baladraf

Abstract


Persaingan yang semakin ketat dan kebutuhan konsumen yang semakin meningkat menuntut industri pertanian dan pangan bergerak secara efisien, cepat, dan tepat. Guna memenuhi kebutuhan tersebut kemampuan untuk melakukan peramalan secara akurat dan meminimalisir kesalahan yang terjadi menjadi suatu hal yang dibutuhkan oleh industri pertanian dan pangan di Indonesia. Digital twin merupakan replika digital dari entitas dunia nyata yang menghasilkan informasi aktual. Tujuan dari literature review ini adalah untuk memberikan gambaran tentang status perkembangan digital twin saat ini dan potensi penerapannya di bidang industri pertanian dan pangan Indonesia. Metodologi yang digunakan dalam penelitian ini adalah literature review melalui database ilmiah Web of Science, Sciencedirect, dan Google Scholar dengan kata kunci digital twin dan agriculture. Kriteria inklusi dan eksklusi digunakan untuk mengeliminasi sumber yang tidak berkaitan sehingga didapatkan referensi sesuai dengan kebutuhan dan dianalisis secara deskriptif. Hasil penelitian menunjukkan bahwa digital twin menjadi teknologi potensial jika diterapkan di industri pertanian dan pangan karena digital twin menimbulkan multiplier effect dengan menciptakan manajemen pertanian yang terpadu mulai dari pra-panen, panen, pasca panen. Namun sayangnya hingga saat ini belum ada industri pertanian yang menerapkan digital twin dalam prosesnya di Indonesia. Hal ini dikarenakan terdapat tantangan antara lain 1) ketersediaan infrastruktur, 2) tingginya biaya investasi, 3) penerimaan pelaku industri pertanian, 4) kualitas data, dan 5) ketersediaan tenaga ahli. Hadirnya riset ini harapannya dapat menjadi inisiasi guna mengenalkan teknologi digital twin sekaligus membuka pandangan bagi para pelaku industri pertanian dan pangan untuk menerapkan teknologi digital twin di Indonesia.


Keywords


Digital twin; efisiensi; industri pertanian; pertanian presisi; simulasi; virtual.

References


Angin, P., Anisi, M. H., Göksel, F., Gürsoy, C., & Büyükgülcü, A. (2020). Agrilora: A digital twin framework for smart agriculture. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 11(4), 77–96. https://doi.org/10.22667/JOWUA.2020.12.31.077

Athira, P. S., Maneesha, K. P., Mathew, V. K., Rose, H. A. N., & Pradyumna, K. (2022). Digital Twin Technology in Greenhouse. International Journal of Engineering Research & Technology, 10(04), 229–231.

Awais, M., Li, W., Li, H., Cheema, M. J. M., Hussain, S., & Liu, C. (2022). Optimization of Intelligent Irrigation Systems for Smart Farming Using Multi-Spectral Unmanned Aerial Vehicle and Digital Twins Modeling. 13. https://doi.org/10.3390/environsciproc2022023013

Badan Pusat Statistik. (2019) Statistik Indonesia 2019 (Indonesian Statistics), Jakarta: Badan Pusat Statistik.

Baladraf, T. T. (2020). Design Automatic Drip Irrigation Integrated of Solar Energy Soil Moisture Based as a Efforts To Optimize The Use of Water. Gontor AGROTECH Science Journal, 6(3), 455. https://doi.org/10.21111/agrotech.v6i3.5019

Brenner, B., & Hummel, V. (2017). Digital Twin as Enabler for an Innovative Digital Shopfloor Management System in the ESB Logistics Learning Factory at Reutlingen - University. Procedia Manufacturing, 9, 198–205. https://doi.org/10.1016/j.promfg.2017.04.039

Caputo, F., Greco, A., Fera, M., & Macchiaroli, R. (2019). Digital twins to enhance the integration of ergonomics in the workplace design. International Journal of Industrial Ergonomics, 71(February), 20–31. https://doi.org/10.1016/j.ergon.2019.02.001

Chaux, J. D., Sanchez-Londono, D., & Barbieri, G. (2021). A digital twin architecture to optimize productivity within controlled environment agriculture. Applied Sciences (Switzerland), 11(19). https://doi.org/10.3390/app11198875

Chen, Y., Yang, O., Sampat, C., Bhalode, P., Ramachandran, R., & Ierapetritou, M. (2020). Digital Twins in Pharmaceutical and Biopharmaceutical Manufacturing : Processes, 8(1088), 1–33.

Ciruela-Lorenzo, A. M., Del-Aguila-Obra, A. R., Padilla-Meléndez, A., & Plaza-Angulo, J. J. (2020). Digitalization of agri-cooperatives in the smart agriculture context. Proposal of a digital diagnosis tool. Sustainability (Switzerland), 12(4). https://doi.org/10.3390/su12041325

Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F. N., & Leip, A. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2(3), 198–209. https://doi.org/10.1038/s43016-021-00225-9

De Preter, A., Anthonis, J., & De Baerdemaeker, J. (2018). Development of a Robot for Harvesting Strawberries. IFAC-PapersOnLine, 51(17), 14–19. https://doi.org/10.1016/j.ifacol.2018.08.054

Defraeye, T., Tagliavini, G., Wu, W., Prawiranto, K., Schudel, S., Assefa Kerisima, M., Verboven, P., & Bühlmann, A. (2019). Digital twins probe into food cooling and biochemical quality changes for reducing losses in refrigerated supply chains. Resources, Conservation and Recycling, 149(April), 778–794. https://doi.org/10.1016/j.resconrec.2019.06.002

Delgado, J. A., Short, N. M., Roberts, D. P., & Vandenberg, B. (2019). Big Data Analysis for Sustainable Agriculture on a Geospatial Cloud Framework. Frontiers in Sustainable Food Systems, 3(July). https://doi.org/10.3389/fsufs.2019.00054

Elijah, O., Rahim, S. K. A., Emmanuel, A. A., Salihu, Y. O., Usman, Z. G., & Jimoh, A. M. (2021). Enabling Smart Agriculture in Nigeria: Application of Digital-Twin Technology. 2021 1st International Conference on Multidisciplinary Engineering and Applied Science, ICMEAS 2021, June. https://doi.org/10.1109/ICMEAS52683.2021.9692351

Erol, T., Mendi, A. F., & Dogan, D. (2020). Digital Transformation Revolution with Digital Twin Technology. 4th International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2020 - Proceedings, January 2021. https://doi.org/10.1109/ISMSIT50672.2020.9254288

Farsi, M., Ariansyah, D., Erkoyuncu, J. A., & Harrison, A. (2021). A digital twin architecture for effective product lifecycle cost estimation. Procedia CIRP, 100, 506–511. https://doi.org/10.1016/j.procir.2021.05.111

Foldager, F. F., Thule, C., Balling, O., & Larsen, P. G. (2021). Towards a Digital Twin - Modelling an Agricultural Vehicle. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12479 LNCS(December 2017), 109–123. https://doi.org/10.1007/978-3-030-83723-5_8

Ghandar, A., Ahmed, A., Zulfiqar, S., Hua, Z., Hanai, M., & Theodoropoulos, G. (2021). A decision support system for urban agriculture using digital twin: A case study with aquaponics. IEEE Access, 9, 35691–35708. https://doi.org/10.1109/ACCESS.2021.3061722

Gholami Mayani, M., Svendsen, M., & Oedegaard, S. I. (2018). Drilling digital twin success stories the last 10 years. Society of Petroleum Engineers - SPE Norway One Day Seminar 2018, April, 290–302. https://doi.org/10.2118/191336-ms

Gkouskou, K., Vlastos, I., Karkalousos, P., Chaniotis, D., Sanoudou, D., & Eliopoulos, A. G. (2020). The “virtual Digital Twins” Concept in Precision Nutrition. Advances in Nutrition, 11(6), 1405–1413. https://doi.org/10.1093/advances/nmaa089

Guo, F., Zou, F., Liu, J., & Wang, Z. (2018). Working mode in aircraft manufacturing based on digital coordination model. International Journal of Advanced Manufacturing Technology, 98(5–8), 1547–1571. https://doi.org/10.1007/s00170-018-2048-0

Haryanto, Y., & Helmi, Z. (2020). Pokok-Pokok Pikiran Pendidikan Pertanian Di Era Teknologi Informasi. Jurnal Kommunity Online, 1(1), 31–42. https://doi.org/10.15408/jko.v1i1.17706

Henson, C. M., Decker, N. I., & Huang, Q. (2021). A digital twin strategy for major failure detection in fused deposition modeling processes. Procedia Manufacturing, 53(2020), 359–367. https://doi.org/10.1016/j.promfg.2021.06.039

Ivanov, D., & Dolgui, A. (2021). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning and Control, 32(9), 775–788. https://doi.org/10.1080/09537287.2020.1768450

Jans-Singh, M., Leeming, K., Choudhary, R., & Girolami, M. (2020). Digital twin of an urban-integrated hydroponic farm. Data-Centric Engineering, 1(2). https://doi.org/10.1017/dce.2020.21

Jiang, Z., Guo, Y., & Wang, Z. (2021). Digital twin to improve the virtual-real integration of industrial IoT. Journal of Industrial Information Integration, 22(August 2020), 100196. https://doi.org/10.1016/j.jii.2020.100196

Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising the Digital Twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology, 29, 36–52. https://doi.org/10.1016/j.cirpj.2020.02.002

Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., Godfray, H. C. J., Herrero, M., Howitt, R. E., Janssen, S., Keating, B. A., Munoz-Carpena, R., Porter, C. H., Rosenzweig, C., & Wheeler, T. R. (2017). Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems, 155, 269–288. https://doi.org/10.1016/j.agsy.2016.09.021

Kahlen, F. J., Flumerfelt, S., & Alves, A. (2016). Transdisciplinary perspectives on complex systems: New findings and approaches. In Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches (Issue March). https://doi.org/10.1007/978-3-319-38756-7

Kannapinn, M., & Schäfer, M. (2021). Autonomous cooking with digital twin methodology. World Congress in Computational Mechanics and ECCOMAS Congress, 1200, 1–12. https://doi.org/10.23967/wccm-eccomas.2020.074

Kessler, I., Perzylo, A., & Rickert, M. (2021). Ontology-Based Decision Support System for the Nitrogen Fertilization of Winter Wheat. Communications in Computer and Information Science, 1355 CCIS, 245–256. https://doi.org/10.1007/978-3-030-71903-6_24

Komatsuzaki, M. (2011). Agro-ecological Approach for Developing a Sustainable Farming and Food System. Journal of Developments in Sustainable Agriculture, 6, 54–2011.

Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 51(11), 1016–1022. https://doi.org/10.1016/j.ifacol.2018.08.474

Legner, C., Eymann, T., Hess, T., Matt, C., Böhmann, T., Drews, P., Mädche, A., Urbach, N., & Ahlemann, F. (2017). Digitalization: Opportunity and Challenge for the Business and Information Systems Engineering Community. Business and Information Systems Engineering, 59(4), 301–308. https://doi.org/10.1007/s12599-017-0484-2

Li, B., Zhong, H., Chen, Y., & Leung, C. (2019). Farming Decision Support Systems with Digital Twin and Internet of Things: A Desiderata. International Journal of Information Technology, 25(2), 1–11. https://www.reuters.com/article/us-china-swinefever-reporting-insight/piles-of-pigs-swine-fever-outbreaks-go-

Lima, A. C., Royer, E., Bolzonella, M., & Pastres, R. (2022). Digital twins for land-based aquaculture: A case study for rainbow trout (Oncorhynchus mykiss). Open Research Europe, 2(February). https://doi.org/10.12688/openreseurope.14145.1

Loaiza, J. H., & Cloutier, R. J. (2022). Analyzing the Implementation of a Digital Twin Manufacturing System: Using a Systems Thinking Approach. Systems, 10(2). https://doi.org/10.3390/systems10020022

Machl, T., Donaubauer, A., & Kolbe, T. H. (2019). Planning agricultural core road networks based on a digital twin of the cultivated landscape. Journal of Digital Landscape Architecture, 2019(4), 316–327. https://doi.org/10.14627/537663034

Mellos Carlos, L., Schardosim Simão, J. P., Saliah-Hassane, H., Silva, J. B. da, & Mota Alves, J. B. da. (2020). Design and Implementation of an Architecture for Hybrid Labs. In Lecture Notes in Networks and Systems (Vol. 80). https://doi.org/10.1007/978-3-030-23162-0_13

Moghadam, P., Lowe, T., & Edwards, E. J. (2020). Digital Twin for the Future of Orchard Production Systems. 92. https://doi.org/10.3390/proceedings2019036092

Monteiro, J., Barata, J., Veloso, M., Veloso, L., & Nunes, J. (2018). Towards sustainable digital twins for vertical farming. 2018 13th International Conference on Digital Information Management, ICDIM 2018, 234–239. https://doi.org/10.1109/ICDIM.2018.8847169

Neethirajan, S., & Kemp, B. (2021). Digital twins in livestock farming. Animals, 11(4). https://doi.org/10.3390/ani11041008

Nemtinov, K., Eruslanova, M., Zazulya, A., Nemtinova, Y., & Salih, H. S. (2020). Creating a digital twin of an agricultural machine. MATEC Web of Conferences, 329, 05002. https://doi.org/10.1051/matecconf/202032905002

Nwaizu, C. C., Olanrewaju, T. O., & Christiana, I. (2022). Application of digital twin in evaluating quality changes in tomato value-chain in Nigeria. 2022 ASABE Annual International Meeting, July. https://doi.org/10.13031/aim.202200719

Onile, A. E., Machlev, R., Petlenkov, E., Levron, Y., & Belikov, J. (2021). Uses of the digital twins concept for energy services, intelligent recommendation systems, and demand side management: A review. Energy Reports, 7(November), 997–1015. https://doi.org/10.1016/j.egyr.2021.01.090

Onwude, D. I., Chen, G., Eke-Emezie, N., Kabutey, A., Khaled, A. Y., & Sturm, B. (2020). Recent advances in reducing food losses in the supply chain of fresh agricultural produce. Processes, 8(11), 1–31. https://doi.org/10.3390/pr8111431

Pang, T.Y., Restrepo, J.D.P., Cheng, C., Yasin, A., Lim, H., dan Miletic, M. (2021). Developing a Digital twin and Digital Thread Framework for an ‘Industry 4.0’ Shipyard. Applied Science, 11, 1097. https://doi.org/10.3390/app11031097

Perno, M., Hvam, L., & Haug, A. (2022). Implementation of digital twins in the process industry: A systematic literature review of enablers and barriers. Computers in Industry, 134(1), 959–964. https://doi.org/10.1016/j.compind.2021.103558

Prawiranto, K., Carmeliet, J., & Defraeye, T. (2021). Physics-Based Digital Twin Identifies Trade-Offs Between Drying Time, Fruit Quality, and Energy Use for Solar Drying. Frontiers in Sustainable Food Systems, 4(January). https://doi.org/10.3389/fsufs.2020.606845

Pylianidis, C., Osinga, S., & Athanasiadis, I. N. (2021). Introducing digital twins to agriculture. Computers and Electronics in Agriculture, 184(July 2020), 105942. https://doi.org/10.1016/j.compag.2020.105942

Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., Wang, L., & Nee, A. Y. C. (2021). Enabling technologies and tools for digital twin. Journal of Manufacturing Systems, 58(October), 3–21. https://doi.org/10.1016/j.jmsy.2019.10.001

Searle, R., McBratney, A., Grundy, M., Kidd, D., Malone, B., Arrouays, D., Stockman, U., Zund, P., Wilson, P., Wilford, J., Van Gool, D., Triantafilis, J., Thomas, M., Stower, L., Slater, B., Robinson, N., Ringrose-Voase, A., Padarian, J., Payne, J., … Andrews, K. (2021). Digital soil mapping and assessment for Australia and beyond: A propitious future. Geoderma Regional, 24. https://doi.org/10.1016/j.geodrs.2021.e00359

Sheldon, I. M. (2017). The competitiveness of agricultural product and input markets: A review and synthesis of recent research. Journal of Agricultural and Applied Economics, 49(1), 1–44. https://doi.org/10.1017/aae.2016.29

Sivalingam, K., Sepulveda, M., Spring, M., & Davies, P. (2018). A Review and Methodology Development for Remaining Useful Life Prediction of Offshore Fixed and Floating Wind turbine Power Converter with Digital Twin Technology Perspective. Proceedings - 2018 2nd International Conference on Green Energy and Applications, ICGEA 2018, April, 197–204. https://doi.org/10.1109/ICGEA.2018.8356292

Skobelev, P. O., Mayorov, I. V., Simonova, E. V., Goryanin, O. I., Zhilyaev, A. A., Tabachinskiy, A. S., & Yalovenko, V. V. (2020). Development of models and methods for creating a digital twin of plant within the cyber-physical system for precision farming management. Journal of Physics: Conference Series, 1703(1). https://doi.org/10.1088/1742-6596/1703/1/012022

Söderström, M., Sohlenius, G., Rodhe, L., & Piikki, K. (2016). Adaptation of regional digital soil mapping for precision agriculture. Precision Agriculture, 17(5), 588–607. https://doi.org/10.1007/s11119-016-9439-8

Sugihono, C., Juniarti, H. A., & Nugroho, N. C. (2022). Digital Transformation in The Agriculture Sector: Exploring The Shifting Role of Extension Workers. STI Policy and Management Journal, 7(2), 139–159. https://doi.org/10.14203/stipm.2022.350

Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. International Journal of Advanced Manufacturing Technology, 94(9–12), 3563–3576. https://doi.org/10.1007/s00170-017-0233-1

Tsolakis, N., Bechtsis, D., & Bochtis, D. (2019). Agros: A robot operating system based emulation tool for agricultural robotics. Agronomy, 9(7). https://doi.org/10.3390/agronomy9070403

Tuegel, E. J., Ingraffea, A. R., Eason, T. G., & Spottswood, S. M. (2011). Reengineering aircraft structural life prediction using a digital twin. International Journal of Aerospace Engineering, 2011. https://doi.org/10.1155/2011/154798

Tzachor, A., Richards, C. E., & Jeen, S. (2022). Transforming agrifood production systems and supply chains with digital twins. Npj Science of Food, 6(1), 1–5. https://doi.org/10.1038/s41538-022-00162-2

Vadlamani, S. R., Scientist, D., International, S., Mittal, P., Leader, D. B., Manufacturing, T., & Equipment, F. (2023). Climate Smart Farming – Deployment of Digital Twin Concepts in Agricultural Seed Value Chain. 215–227. https://doi.org/10.46254/an12.20220049

van der Ploeg, J. D., Ploeg, J. D. van der, & van der Ploeg, J. D. (2013). Peasants and the Art of Farming: A Chayanovian Manifesto. In Peasants and the Art of Farming. www.fernwoodpublishing.ca

Verdouw, C., & Kruize, J. W. (2017). Digital twins in farm management: illustrations from the FIWARE accelerators SmartAgriFood and Fractals. 7th Asian-Australasian Conference on Precision Agriculture, June 2018, 1–5. https://www.researchgate.net/publication/322886729

Wadoux, A. M. J. C., & McBratney, A. B. (2021). Digital soil science and beyond. Soil Science Society of America Journal, 85(5), 1313–1331. https://doi.org/10.1002/saj2.20296

Weckesser, F., Beck, M., Hülsbergen, K. J., & Peisl, S. (2022). A Digital Advisor Twin for Crop Nitrogen Management. Agriculture (Switzerland), 12(2). https://doi.org/10.3390/agriculture12020302

Xiao, Y., & Watson, M. (2019). Guidance on Conducting a Systematic Literature Review. Journal of Planning Education and Research, 39(1), 93–112. https://doi.org/10.1177/0739456X17723971

Yang, Y., Ng, E. J., Chen, Y., Flader, I. B., & Kenny, T. W. (2016). A Unified Epi-Seal Process for Fabrication of High-Stability Microelectromechanical Devices. Journal of Microelectromechanical Systems, 25(3), 489–497. https://doi.org/10.1109/JMEMS.2016.2537829

Zhang, L., & Shi, L. S. (2018). The Platform Design and Implementation of Campus Fire Safety Knowledge Based on Unity3D. Procedia Computer Science, 154, 832–837. https://doi.org/10.1016/j.procs.2019.06.071

Zhao, J., Yu, Y., Lei, J., & Liu, J. (2023). Multi-Objective Lower Irrigation Limit Simulation and Optimization Model for Lycium Barbarum Based on NSGA-III and ANN. Water (Switzerland), 15(4). https://doi.org/10.3390/w15040783

Zong, X., Luan, Y., Wang, H., & Li, S. (2021). A multi-robot monitoring system based on digital twin. Procedia Computer Science, 183, 94–99. https://doi.org/10.1016/j.procs.2021.02.035




DOI: https://doi.org/10.24198/jt.vol18n1.4

Refbacks

  • There are currently no refbacks.


Indexed by:

  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY-SA 4.0)