Efektivitas dalam Memantau dan Mengontrol Sistem Hidroponik Apung pada Pertumbuhan Pakcoy Berbasis Sensor TDS Arduino Uno R3

Puspitahati Puspitahati, Fandri Bayu Kelana, Nurul Izzah Aulia

Abstract


Keberhasilan sistem hidroponik apung tergantung dari pengelolaan kadar nutrisi larutan.  Saat ini pemantauan dan pengaturan kadar nutrisi masih secara konvensional yang memerlukan waktu dan tenaga. Oleh karena itu diperlukan sistem otomatis yang mampu mengontrol konsentrasi nutrisi secara real-time dan akurat. Tujuan dari penelitian ini adalah untuk memantau dan mengontrol kadar nutrisi dan mengetahui efisiensi sensor TDS pada alat kontrol otomatis mikrokontroler Arduino UNO R3.  Penelitian ini dilakukan mulai Oktober 2023 hingga selesai di Rumah Tanaman Jurusan Teknologi Pertanian Fakultas Pertanian Universitas Sriwijaya. Metodologi mencakup desain fungsional dan struktural, sistem pemantauan dan kontrol berbasis mikrokontroler, serta pengujian demonstrasi perangkat kontrol nutrisi hidroponik otomatis, dievaluasi berdasarkan parameter yaitu akurasi, presisi, dan persentase kesalahan. Penelitian ini menggunakan konsentrasi nutrisi 500 ppm selama minggu ke-2 dan 600 ppm selama minggu ke-3, menggunakan nutrisi AB Mix setiap jam selama 12 jam per hari diukur menggunakan Arduino UNO R3 dan TDS meter. Pada pengukuran konsentrasi 2 MST sebesar 554 ppm, pada 3 MST meningkat menjadi 657 ppm. Tingkat akurasi   menunjukkan performa cukup baik dengan rata-rata sebesar 89% pada 2 MST dan meningkat menjadi 91% pada 3 MST. Nilai Presisi meningkat dari 2 MST sebesar 13,58% menjadi 7,81% pada 3 MST, menunjukkan peningkatan konsistensi kinerja alat. Persentase kesalahan dalam pengukuran nutrisi rata-rata sebesar 11% pada 2 MST menurun menjadi 9,7% pada 3 MST. Hasil tersebut menunjukkan bahwa meskipun alat kontrol otomatis belum mencapai akurasi dan presisi, namun nilai kesalahan pengukuran berada dalam rentang 10-11% masih dapat ditoleransi dalam aplikasi hidroponik di lapangan, sehingga menjadikan sistem ini sebagai teknologi yang aplikatif dan berkontribusi dalam pengembangan smart farming. Kesimpulan penelitian ini menunjukkan adanya korelasi positif antara sensor TDS Mikrokontroler Arduino Uno R3 dengan TDS meter, dengan nilai koefisien korelasi sebesar 0,56 pada 3 MST (Minggu Setelah Tanam) pada pertumbuhan tanaman pakcoy, yang mengindikasikan hubungan linier dengan trend berbanding lurus.


Keywords


Arduino UNO R3; hidroponik terapung; Mikrokontroler; AB Mix Nutrition; TDS.

References


Albert, M. C., Hans, H., Karteja, H., & Widianto, M. H. (2023). Development of Hydroponic IoT-based Monitoring System and Automatic Nutrition Control using KNN. ICCoSITE 2023 - International Conference on Computer Science, Information Technology and Engineering: Digital Transformation Strategy in Facing the VUCA and TUNA Era, May, 974–979. https://doi.org/10.1109/ICCoSITE57641.2023.10127765

Ambrosio, A. Z. M. H., Jacob, L. H. M., Rulloda, L. A. R., Jose, J. A. C., Bandala, A. A., Sy, A., Vicerra, R. R., & Dadios, E. P. (2019). Implementation of a Closed Loop Control System for the Automation of an Aquaponic System for Urban Setting. 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2019. https://doi.org/10.1109/HNICEM48295.2019.9072729

Anwar, M.F., Etiana, E., Sofyan, & Hidayatullah, M. (2022). Sistem Hidroponik Otomatis Berbasis Arduino Uno R3. Journal Altron; Journal of Electronics, Science & Energy systems, 1(1), 25-33. https://doi.org/10.51401/altron.v1i1.1674

Ardiani, Y. M., & Noegroho. (2020). Layout housing typology using hydroponics system. IOP Conference Series: Earth and Environmental Science, 426(1). https://doi.org/10.1088/1755-1315/426/1/012106

Crisnapati, P. N., Wardana, I. N. K., Aryanto, I. K. A. A., & Hermawan, A. (2017). Hommons: Hydroponic management and monitoring system for an IOT based NFT farm using web technology. 2017 5th International Conference on Cyber and IT Service Management, CITSM 2017. https://doi.org/10.1109/CITSM.2017.8089268

Eridani, D., Wardhani, O. & Widianto, E.D. 2017. Designing and implementing the arduino-based nutrition feeding automation system of a prototype scaled nutrient film technique (NFT) hydroponics using total dissolved solids (TDS) sensor. In 2017 4th International conference on information technology, computer, and electrical engineering (ICITACEE) Semarang, Indonesia, 2017, pp. 170-175. https://doi.org/10.1109/ICITACEE.2017.8257697

Hanafie, A., Baco, S. & Asri, N.R. (2023). Implementasi Sistem Otomatisasi Penyiraman Tanaman Hidroponik. ILTEK: Jurnal Teknologi, 18(01), 33-39. https://doi.org/10.47398/iltek.v18i01.82

Harijanto, E., Yuliati, A., & Widiyanti, P. (2022). Compressive Strength and Porosity Size of Bovine-Gelatin-Chitosan Hydroxyapatite Scaffold. Journal of International Dental and Medical Research, 15(3), 990–994.

Hidayatullah, M., Sofyan, S., Ali Topan, P., Andriani, T., & Nurhairunnisah, N. (2022). Monitoring System of Water Quality on Hydroponic Planting Media using Total Dissolved Solid (TDS) Sensor Based Arduino Uno R3. Jurnal Ilmu Fisika | Universitas Andalas, 14(2), 108–115. https://doi.org/10.25077/jif.14.2.108-115.2022

Irawan, A. (2019). Kalibrasi Spektrofotometer Sebagai Penjaminan Mutu Hasil Pengukuran dalam Kegiatan Penelitian dan Pengujian. Indonesian Journal of Laboratory, 1(2), 1. https://doi.org/10.22146/ijl.v1i2.44750

Irawan, Y., Febriani, A., Wahyuni, R. & Devis, Y. (2021). Water quality measurement and filtering tools using Arduino Uno, PH sensor and TDS meter sensor. Journal of Robotics and Control (JRC), 2(5), 357-362. https://doi.org/10.18196/jrc.v2i5.10166

Kuncoro, E.A., Prima, F.H., Hower, H., Kurniawan, D., & Hersyamsi. (2024). Uji Kinerja Alat Kontrol Kekeruhan dan Derajat Keasaman untuk Penyediaan Air Baku Tanaman Hidroponik Berbasis Mikrokontroler Arduino Uno R3. Jurnal Technopreneur (JTech), 12(1), 1-8. https://doi.org/10.30869/jtech.v12i1.1340

Lestari, I., Prasetyo, R. D., & Purnomo, E. (2024). Design and Implementation of Automated Hydroponic System using Arduino and IoT for Sustainable Agriculture. Journal of Agricultural Technology, 22(4), 108-116.

Lenni, L., Suhardiyanto, H., Seminar, K. B., & Setiawan, R. P. A. (2020). Development of a control system for lettuce cultivation in floating raft hydroponics. IOP Conference Series: Earth and Environmental Science, 542(1). https://doi.org/10.1088/1755-1315/542/1/012067

Lim, D., Keerthi, K., Perumbilavil, S., Suchand Sandeep, C.S., Antony, M.M. & Matham, M.V. (2024). A real-time on-site precision nutrient monitoring system for hydroponic cultivation utilizing LIBS. Chemical and Biological Technologies in Agriculture, 11(1), 111. https://doi.org/10.1186/s40538-024-00641-6

Michael, G. W., Tay, F. S., & Then, Y. L. (2021). Development of Automated Monitoring System for Hydroponics Vertical Farming. Journal of Physics: Conference Series, 1844(1). https://doi.org/10.1088/1742-6596/1844/1/012024

Montoya, A. P., Obando, F. A., Morales, J. G., & Vargas, G. (2017). Automatic aeroponic irrigation system based on Arduino’s platform. Journal of Physics: Conference Series, 850(1). https://doi.org/10.1088/1742-6596/850/1/012003

Nguyen, H. C., Thi, B. T. V., & Ngo, Q. H. (2022). Automatic Monitoring System for Hydroponic Farming: Iot-Based Design and Development. Asian Journal of Agriculture and Rural Development, 12(3), 210–219. https://doi.org/10.55493/5005.v12i3.4630

Nikose, P. C. & Mehare, J. P. (2023). Monitoring and Controlling Hydroponic Units using IoT. International Journal For Multidisciplinary Research, 5(3), 1-5. https://doi.org/10.36948/ijfmr.2023.v05i03.4167

Pantanella, E., Cardarelli, M., Danieli, P. P., Macniven, A., & Colla, G. (2010). Acuicultura integrada-agricultura flotante: ¿es una estrategia válida para elevar el sustento? XXVIII Congreso Internacional de Horticultura Sobre Ciencia y Horticultura Para Las Personas (IHC 2010): Simposio Internacional Sobre 921, 79–86.

Parenreng, J.M., Andani, A.F.A.T., Yahya, M. & Adiba, F. (2024). Internet-based Design of Hydroponic Plants Monitoring and Automation Control Systems. IOTA Journal, 4(2), 339-353. https://doi.org/10.31763/iota.v4i2.744

Purwanto, A., Kurniawan, D., & Suryanto, H. (2024). Optimization of Nutrient Control in Hydroponic Systems using Arduino-based Automation. Journal of Smart Agriculture, 14(3), 134-142.

Rouhillah, R., Salfikar, I., & Ichan, M. (2022). Kontrol Nutrisi Tanaman Hidroponik Berbasis Monitoring Internet of Things. Elektron : Jurnal Ilmiah, 14(November), 72–77. https://doi.org/10.30630/eji.14.2.306

Rusman, J., Michael, A., Garonga, M. & Paonganan, Y. (2022). Sistem kontrol kadar nutrisi tanaman hidroponik berbasis arduino UNO. Journal Dynamic Saint, 7(2), 8-14. https://doi.org/10.47178/dynamicsaint.v7i2.1895

Sari, I.P., Novita, A., Al-Khowarizmi, A.K., Ramadhani, F. & Satria, A. (2024). Pemanfaatan Internet of Things (IoT) pada Bidang Pertanian Menggunakan Arduino UnoR3. Blend Sains Jurnal Teknik, 2(4), 337-343. https://doi.org/10.56211/blendsains.v2i4.505

Satoh, Y. & Kakiuchi, H. (2021). Calibration method to address influences of temperature and electrical conductivity for a low-cost soil water content sensor in the agricultural field. Agricultural Water Management, 255, p.107015. https://doi.org/10.1016/j.agwat.2021.107015

Shariff, M. A. H. M., Rahim, Y. A., Ali, A. M., Khalil, A. N. M., Azmi, A. I., & Salleh, H. M. (2021). Effect of Coco Amido Propyl Betaine (CAPB) on Thermal Conductivity of Bio-Based Hybrid Nanolubricant. In Lecture Notes in Mechanical Engineering. https://doi.org/10.1007/978-981-16-0866-7_32

Sihombing, P., Karina, N. A., Tarigan, J. T., & Syarif, M. I. (2018). Automated hydroponics nutrition plants systems using arduino uno microcontroller based on android. Journal of Physics: Conference Series, 978(1). https://doi.org/10.1088/1742-6596/978/1/012014

Sulaiman, H., Yusof, A.A. & Nor, M.K.M. (2024). Enhancing Electrical Conductivity and pH Sensor Measurements in Precision Hydroponics: Comparative Analysis of Six Data Processing Methods. In IOP Conference Series: Earth and Environmental Science, 1426 (1), 012004. IOP Publishing.

Sulaiman, S.F., KASSIM, A.H.A., Samsudin, S.I., Sulaiman, N.A. and Sunar, N., 2023. IoT-based monitoring system for hydroponics. Przegląd Elektrotechniczny, 2023(8). https://doi.org/10.15199/48.2023.08.24

Suseno, J. E., Munandar, M. F., & Priyono, A. S. (2020). The control system for the nutrition concentration of hydroponic using web server. Journal of Physics: Conference Series, 1524(1). https://doi.org/10.1088/1742-6596/1524/1/012068

Tatas, K., Al-Zoubi, A., Christofides, N., Zannettis, C., Chrysostomou, M., Panteli, S. & Antoniou, A. (2022). Reliable IoT-based monitoring and control of hydroponic systems. Technologies, 10(1), 26. https://doi.org/10.3390/technologies10010026

Wardihani, E. D., Sari, E. U., Nugroho, A. S., Badruzzaman, Y., & Nursyahid, A. (2024). Monitoring and Controlling of IoT-Based Greenhouse Parameters With the MQTT Protocol. 13(1), 38–43.

Wibowo, R.R.D.I., Ramdhani, M., Priramadhi, R.A. & Aprillia, B.S. (2019). IoT based automatic monitoring system for water nutrition on aquaponics system. In Journal of physics: Conference series, 1367(1), 012071. IOP Publishing. https://doi.org/10.1088/1742-6596/1367/1/012071

Yama, D.I. & Kartiko, H. (2020). Pertumbuhan dan kandungan klorofil pakcoy (Brassica rappa L) pada beberapa konsentrasi AB Mix dengan sistem wick. Jurnal Teknologi, 12(1), 21-30. https://doi.org/10.24853/jurtek.12.1.21-30

Yanes, A. R., Martinez, P., & Ahmad, R. (2020). Towards automated aquaponics: A review on monitoring, IoT, and smart systems. Journal of Cleaner Production, 263, 121571. https://doi.org/10.1016/j.jclepro.2020.121571

Yin, H., Cao, Y., Marelli, B., Zeng, X., Mason, A.J. & Cao, C. (2021). Soil sensors and plant wearables for smart and precision agriculture. Advanced Materials, 33(20), 2007764. https://doi.org/10.1002/adma.202007764




DOI: https://doi.org/10.24198/jt.vol19n1.7

Refbacks

  • There are currently no refbacks.


Indexed by:

  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY-SA 4.0)