*Corresponding author,
e-mail : yoga.ww@unpad.ac.id (Y. W. Wardhana)
https://doi.org/10.24198/idjp.v1i3.23508
© 2019 Wardhana et al
Vol 1, Issue 3, 2019 (74-78)
http://journal.unpad.ac.id/idjp
Dissolution Behaviours of Acetaminophen and Ibuprofen Tablet Inuenced By L–
HPC 21, 22, and Sodium Starch Glycolate as Disintegrant
Yoga W. Wardhana*, Dradjad Priambodo
Department Pharmaceutics and Pharmaceuticals Technology Faculty of Pharmacy, Universitas
Padjadjaran
Jl. Raya Bandung – Sumedang Km. 21 Jatinangor 45363, Sumedang, Indonesia
Received: 5 Sep 2019/Revised: 23 Sep 2019/Accepted: 23 Sep 2019/Published: 1 Oct 2019
ABSTRACT
The dissolution of tablets is one of a drug absorption determinant. Disintegrant agent has play an
important role on determining the dissolution of tablets. In this experiment, the dissolution behaviours
of Acetaminophen and Ibuprofen Tablet was studied using various disintegrant agent such as Low
substitutedHydroxypropyl Cellulose (L–HPC) 21, L–HPC 22 and Sodium Starch Glycolate (SSG)
as comparator. Those disintegrant agents were used at three concentration (6%, 7% and 8%) for every
tablets formula. Tablets were made by wet granulation method and pressed using single punch 13

of weight and size (diameter and thickness), hardness, friability, disintegration time and dissolution.
Physically standards from tablets were in good condition, the standards of the weight and thickness
          


tablet with 8% L– HPC 21, 7% and 8% SSG. The conclusion of the study was the L–HPC has more
disintegrant character at hydrophilic active ingredients.
Keywords:
1. Introduction
Tablet dosage forms has widely used in global
       
composition of all compressed tablets should, in
fact, be designed to guarantee that they will readily
undergo both disintegration and dissolution in the
upper gastrointestinal (GI) tract.
Dissolution tests are used nowadays in a wide
variety of applications: to help identify which
formulations will produce the best results in the
clinic, to release products to the market, to
verify batch to batch reproducibility, and to help
identify whether changes made to formulations
or their manufacturing procedure after marketing

clinic. Further, dissolution tests can sometimes be
implemented to help determine whether a generic
version of the medicine can be approved or rejected
[3].
Dissolution tests can be used to predict the in
vivo performance of the dosage form when release
of the drug is the limiting factor in the absorption
      
complex factors, one of all is excipient selection in
tablet formulation [3].
Standard in vitro dissolution testing models
include two processes: the release of drug substance
from the solid dosage form and drug dissolution.
Drug release is determined by formulation factors
such as disintegration/dissolution of formulation


    
solid-state pro-perties of the substance (e.g., particle
surface area, polymorphism), and formula-tion
properties (e.g., wetting, solubilization). In vitro
dissolution testing should thus provide predictions
of both the drug release and the dissolution
processes in vivo. To reach this goal, the choice of
Y. W. Wardhana et al / Indo J Pharm 3 (2019) 74-78
75
dissolution apparatus
and test medium should
be carefully considered
[6].
Disintegration/dissolution by formulation factors

such as Low substituted hydroxypropyl cellulose
(L– HPC) and Sodium starch glycolate (SSG).
L–HPC is widely used in oral solid dosage
forms. It is primarily used as a disintegrant, and
as a binder for tablets and granules in wet or dry
granulation. Whereas SSG commonly is used in
oral pharmaceuticals as a disintegrant in capsule
and tablet formulations. Usually disintegration
occurs by rapid uptake of water followed by rapid
and enormous swelling [7].
In this experiment, the investigation of L–
        
been compared between hydrophilic substance
such as Acetaminophen Tablet and hydrophobic

      
experiment can be used by formulator pharmacist
as recommendation in designing solid dosage
formulation.
2. Materials and Methods
2.1. Materials
    
Distributor PT. Bratachem), Ibuprofen (kindly
provided by PT. Indofarma Tbk.), Low-Substituted
Hydroxy propyl Cellulose
     
by PT. Lawsim Zecha), Sodium Starch Glycolate

tablet / Ampro-tab (generously donated from PT.
Holi Farma), Potassium dihydrogen Phosphat,

     
Talcum (generously donated from PT. Kimia
Farma), NaOH (from Pharmacy Distributor PT.

2.2. Methods
1. Tablet Formulation
The tablets was made in variation formulas
shown in Table 1 and 2. The preparations were
using wet granulation with 10 mesh for wet mass
       
Table 1. Composition of tablet excipients in Acetaminophen Tablets
Ingredients
F
A
(%) F
B
(%) F
C
(%)
FA FA FA
3
FB
1
FB
2
FB FC
1
FC
2
FC
3
Acetaminophen 77 77 77 77 77 77 77 77 77
Lactose 11.2 10.2 9.2 11.2 10.2 9.2 11.2 10.2 9.2
Amylum for Paste 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
L-HPC 21 6 7 8 - - - - - -
L-HPC 22 - - - 6 7 8 - - -
Primojel - - - - - - 6 7 8
 1 1 1 1 1 1 1 1 1
Aerosil 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Talcum 1 1 1 1 1 1 1 1 1
Table 2. Composition of tablet excipients in Ibuprofen Tablets
Ingredients
P
A
(%) P
B
(%) P
C
(%)
P
A1
P
A2
P
A3
P
B1
P
B2
P
B3
P
C1
P
C2
P
C3
Ibuprofen 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5
Lactose 18.75 17.75 16.75 18.75 17.75 16.75 18.75 17.75 16.75
Amylum for Paste 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25
L-HPC 21 6 7 8 - - - - - -
L-HPC 22 - - - 6 7 8 - - -
Primojel - - - - - - 6 7 8
 1 1 1 1 1 1 1 1 1
Aerosil 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Talcum 1 1 1 1 1 1 1 1 1
Y. W. Wardhana et al / Indo J Pharm 3 (2019) 74-78
76
granulator sieving. Then, after manually mixture
with disintegrants and lubricants for just 3 minutes,
all of granules were evaluation to determine that all
of granule ready to compress.
2. Granules Evaluation

on drying, bulk density, tap density, compressibility,
        
good criteria such as good compressibility and

3. Tablet Evaluation
After all of granules passed from evaluation,

    
will be checked for hardness, friability, thickness,
weight and uniformity include disintegration time
and dissolution.
3. Result and Discussion
      
       
standard for compressed tablet. Then, all of
granules will proceed to pressed into tablet with 13
       
After that, tablets was evaluated for checking tablet

Performance of physic from tablets were in
good condition, the standards of the weight and
thickness uniformity, hardness and friability
      
at disintegration time and solubility percentage
(dissolution). There were found something make
some formula out of standards.
The results of disintegration time and dissolution
shown that only Acetaminophen tablets in formula
F
A1

time (15 minutes) and dissolution (30 minutes,


Parameters
L-HPC 21 L-HPC 22 SSG
FA
1
FA
2
FA
3
FB
1
FB
2
FB
3
FC
1
FC
2
FC
3
Loss on drying
(%)
1.8 0.62 0.4 1.3 1.1 0.6 0.7 0.62 0.6
Bulk density
(g/ml)
0.551±
0.008
0.541±
0.015
0.561±
0.008
0.532±
0.022
0.546±
0.008
0.536±
0.008
0.582±
0.009
0.561±
0.008
0.582±
0.009
Tap density
(g/ml)
0.606±
0.018
0.612±
0.011
0.646±
0.021
0.594±
0.010
0.619±
0.011
0.625 0.674±
0.013
0.625 0.674±
0.013
Compressibility
(%)
9.044±
4.057
11.631±
2.929
13.027±
4.056
10.517
±2.252
11.735
±1.484
14.24±
1.386
13.632
±1.554
10.24±
1.386
13.632±
1.554
Flow ability
(g/detik)
12.739±
1.24
10.706±
0.68
9.206±
0.21
12.197
± 0.958
12.056
± 1.01
10.41±
0.45
7.267±
1.42
10.281
±1.9
8.61±
0.58
Angle of repose
(
o
)
26.087±
3.11
23.152±
1.02
19.587±
1.299
23.502
±2.45
20.25±
3.37
20.76±
1.56
15.69±
1.08
19.9±
1.85
20.12±
2.54

Parameters
L-HPC 21 L-HPC 22 SSG
PA
1
PA
2
PA
3
PB
1
PB
2
PB
3
PC
1
PC
2
PC
3
Loss on drying
(%)
1.64 1.61 1.94 1.47 1.48 1.55 1.76 1.71 1.77
Bulk density
(g/ml)
0.449±
0.005
0.442±
0.003
0.444±
0.005
0.478±
0.059
0.427±
0.008
0.454±
0.005
0.452±
0.003
0.457±
0.003
0.472±
0.003
Tap density (g/
ml)
0.557±
0.004
0.557±
0.012
0.560±
0.012
0.544±
0.004
0.533±
0.007
0.555±
0.008
0.555±
0.008
0.557±
0.004
0.576±
0.004
Compressibility
(%)
19.44±
1.172
20.71±
1.762
20.77±
0.905
18.86±
0.968
19.47±
0.739
18.18±
0.210
18.47±
0.725
17.88±
0.637
18.1
0.627
Flow ability
(g/detik)
12.32±
1.698
12.92±
0.685
11.31±
0.593
12.96±
0.897
12.68±
0.281
10.91±
0.422
12.86±
0.102
12.76±
0.764
13.08±
0.987
Angle of repose
(
o
)
24.49±
0.293
24.32±
0.145
24.64±
0.808
24.15±
1.004
25.87±
0.612
25.41±
0.166
24.71±
0.956
23.61±
0.910
26.00±
0.121
Y. W. Wardhana et al / Indo J Pharm 3 (2019) 74-78
77

tablet were not passed from desintegration time
but on the dissolution only formula P
A3
, P
C2
and P
C3
were passed from the test (60 minutes, 80%).
This results were concluded that L-HPC 21 has
more desintegrant character than L-HPC 22
especially with hydrophobic API.
4. Conclusion
From the result shown that Aceta-minophen tablets


         
80%, 60 minutes) only for tablet with 8% L–HPC
21, 7% and 8% SSG. Based on those data, its
were concluded that L–HPC has more disintegrant
character with hydrophilic active ingredients.
Between those L–HPC , L–HPC 21 has more
desintegrant nature than L–HPC 22.
Acknowledgement
The authors would like to thanks to PT. Lawsim
Zecha, PT. Holi Farma, PT. Kimia Farma and PT.
Indofarma for their kindly materials provided, and
to Irene Natalie and Randy Andrian Herawan for
the data collection.
Y. W. Wardhana et al / Indo J Pharm 3 (2019) 74-78
78
References
[1] 
Dosage Form Design. New York: Longmann
Group Churchill Livingstone. p. 234-238, 240-
242. 2002
[2] 

Natural and Synthetic Superdisintegrants in
the Formulation of Fast Dissolving Tablets.
International Journal of Green Pharmacy.
2007; 2(1) : 2225.
[3] Dressman J., Kramer, J., Pharmaceutical
Dissolution Testing, Florida: Taylor & Francis
Group, LLC. 2005.
[4] Dressman, J.B., Oral Drug Absorption
(Prediction and Assessment), New York:

[5] Departemen Kesehatan Republik Indonesia.
     
Departemen Kesehatan Republik Indonesia.
2014.
[6] 
Formulation : A Practical Guide from Candidate
Drug Selection to Commercial Dosage Form
2nd ed., New York: Informa Healthcare USA,
Inc. 2009.
[7]       

6th ed., London: RPS Publishing. 2009.
[8]      
Substituted Hydroxypropyl Cellulose, NF.


Parameters
L-HPC 21 L-HPC 22 SSG
FA
1
FA
2
FA
3
FB
1
FB
2
FB
3
FC
1
FC
2
FC
3
Weight Uniformity
(mg)
641.15±
19.77
662.68±
8.15
630.52±
12.22
650.87
±24.72
641.58
±10.2
638.2±
8.48
652.4±
10.84
648.2±
10.81
655.09±
15.45
Thickness Uniformity
(mm)
5.352±
0.236
5.501±
0.059
5.308±
0.089
5.458±
0.155
5.422±
0.053
5.425±
0.076
5.349±
0.083
5.244±
0.085
5.354±
0.072
Hardness (N)
106±
30.75
83.25±
9.92
92 ±
17.85
103.4±
19.63
86.6±
8.34
93 ±
19.13
109±
26.37
55.775
±5.43
133.375 ±
18.96
Friability (%)
0.448±
0.076
0.456±
0.012
0.342±
0.087
0.394±
0.035
0.604±
0.198
0.472±
0.071
0.691±
0.151
0.78±
0.345
0,679±
0.038
Desintegration time
(minutes)
18.061 12.361 11.061 12.261 11.955 2.05 8.322 8.411 4.533
Dissolution (%) 65.642 101.065 104.924 86.822 81.577 105.21 106.39 91.064 104.098

Parameters
L-HPC 21 L-HPC 22 SSG
PA
1
PA
2
PA
3
PB
1
PB PB PC PC PC
Weight
Uniformity (mg)
660.8±
4.188
657.8±
5.053
648.2±
6.709
655.3 ±
6.052
649.2±
3.876
658.5±
9.327
654±
3.005
646.6±
2.377
649.4±
6,459
Thickness
Uniformity (mm)
4.217±
0.050
4.23±
0.06
4.23±
0.06
4.23±
0.04
4.23±
0.05
4.22±
0.05
4.24±
0.04
4.22±
0.03
4.24±
0.06
Hardness (N) 120±
14.42
124±
15.111
105.3 ±
11.59
116.9±
14.911
125.9±
11.938
113.1 ±
15.598
115.7±
16.163
123,1±
15.355
105.3±
11.594
Friability (%) 0.47±
0.03
0.47±
0.26
0.41±
0.03
0.47±
0.02
0.45±
0.05
0.48±
0.04
0.67±
0.08
0,51±
0.01
0,67±
0.05
Desintegration
time (minutes)
59.35 48.33 38.19 51.5 42.2 33.45 25.75 11.83 10.66
Dissolution (%) 58.834 79.714 104.112 20.035 43.403 61.143 72,238 96.754 104,08

Refbacks

  • There are currently no refbacks.