Cellulose Nanocrystals Preparation as Pharmaceuticals Excipient : a Review
Abstract
Cellulose nanocrystals is a cellulose derivates which has been widely researched and observed as an chemical agent. Different with cellulose that has been widely used as pharmaceutical excipient especially in solid dosage form, cellulose in nanocrystals form is not available in pharmaceutical grade. Cellulose nanocrystals have different characteristics and quality which is depend on its preparation including sourcing, isolation procedure, and hydrolysis reaction involved. This difference is very important to deeply observed its impact in pharmaceutical dosage form with different active ingredients. In addition, cellulose nanocrystals should meet FDA requirement as pharmaceutical excipient. This review describe cellulose nanocrystals preparation and its characteristics, its application to active pharmaceutical ingredients, and its properties in order to meet FDA requirement.
Keywords: Cellulose, nanocrystals, pharmaceutical excipient
References
Rowe RC, Sheskey PJ, Cook WG, Fenton ME. Handbook of pharmaceutical excipients - 7th edition. Vol. 18. 2009.
Rånby BG. Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc [Internet]. 1951;11(0):158–64. Available from: http://dx.doi.org/10.1039/DF9511100158
Keijsers ERP, Yılmaz G, van Dam JEG. The cellulose resource matrix. Carbohydr Polym [Internet]. 2013;93(1):9–21. Available from: http://www.sciencedirect.com/science/article/pii/S0144861712009022
Heinze T. Cellulose: Structure and Properties. In: Rojas O, editor. Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials Advances in Polymer Science. Vol.271. Springer, Cham; 2015. p. 1–52.
Li C-Y, Qu L-J, Guo X-Q. Study on the degumming process of Abelmoschus manihot (L.) Medic fiber. Res J Appl Sci Eng Technol. 2013 Jun 1;6:269–72.
Dam J, Gorshkova TA. CELL WALLS AND FIBERS | Fiber Formation. In: Encyclopedia of Applied Plant Sciences. 2003. p. 87–96.
Lavanya D, Kulkarni P, Dixit M, Raavi PK, Krishna LN V. Sources of cellulose and their applications- A review. Int J Drug Formul Res. 2011 Jan 1;2:19–38.
Kobayashi K, Kimura S, Togawa E, Wada M. Crystal transition from Na–cellulose IV to cellulose II monitored using synchrotron X-ray diffraction. Carbohydr Polym [Internet]. 2011;83(2):483–8. Available from: http://www.sciencedirect.com/science/article/pii/S0144861710006247
Huang J, Fu S, Gan LBT-LC and A, editors. Chapter 2 - Structure and Characteristics of Lignin. In Elsevier; 2019. p. 25–50. Available from: http://www.sciencedirect.com/science/article/pii/B9780128139417000023
Dinh Vu N, Thi Tran H, Bui ND, Duc Vu C, Viet Nguyen H. Lignin and Cellulose Extraction from Vietnam’s Rice Straw Using Ultrasound-Assisted Alkaline Treatment Method. Roghani-Mamaqani H, editor. Int J Polym Sci [Internet]. 2017;2017:1063695. Available from: https://doi.org/10.1155/2017/1063695
Wang H, Postle R, Kessler R, Kessler W. Removing Pectin and Lignin During Chemical Processing of Hemp for Textile Applications. Text Res J - TEXT RES J. 2003 Aug 1;73:664–9.
Bajpai P. Chapter 2 - Wood and Fiber Fundamentals. In: Bajpai PBT-BH of P and P (Third E, editor. Elsevier; 2018. p. 19–74. Available from: http://www.sciencedirect.com/science/article/pii/B9780128142400000021
Galiwango E, Abdel Rahman NS, Al-Marzouqi AH, Abu-Omar MM, Khaleel AA. Isolation and characterization of cellulose and α-cellulose from date palm biomass waste. Heliyon [Internet]. 2019;5(12):e02937. Available from: http://www.sciencedirect.com/science/article/pii/S240584401936596X
Candido RG, Gonçalves AR. Evaluation of two different applications for cellulose isolated from sugarcane bagasse in a biorefinery concept. Ind Crops Prod [Internet]. 2019;142:111616. Available from: http://www.sciencedirect.com/science/article/pii/S0926669019306260
Rehman N, Alam S, Amin NU, Mian I, Ullah H. Ecofriendly Isolation of Cellulose from Eucalyptus lenceolata: A Novel Approach. Wang D-Y, editor. Int J Polym Sci [Internet]. 2018;2018:8381501. Available from: https://doi.org/10.1155/2018/8381501
George J, N S. Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnol Sci Appl. 2015 Nov 1;8:45.
Pourmoazzen Z, Sadeghifar H, Chen J, Yang G, Zhang K, Lucia L. The morphology, self-assembly, and host-guest properties of cellulose nanocrystals surface grafted with cholesterol. Carbohydr Polym [Internet]. 2020;233:115840. Available from: http://www.sciencedirect.com/science/article/pii/S014486172030014X
Shankar S, Baraketi A, D’Auria S, Fraschini C, Salmieri S, Jamshidian M, et al. Development of support based on chitosan and cellulose nanocrystals for the immobilization of anti-Shiga toxin 2B antibody. Carbohydr Polym [Internet]. 2020;232:115785. Available from: http://www.sciencedirect.com/science/article/pii/S0144861719314535
Kamelnia E, Divsalar A, Darroudi M, Yaghmaei P, Sadri K. Synthesis, 99mTc-radiolabeling, and biodistribution of new cellulose nanocrystals from Dorema kopetdaghens. Int J Biol Macromol [Internet]. 2020;146:299–310. Available from: http://www.sciencedirect.com/science/article/pii/S0141813019360842
Putro JN, Ismadji S, Gunarto C, Yuliana M, Santoso SP, Soetaredjo FE, et al. The effect of surfactants modification on nanocrystalline cellulose for paclitaxel loading and release study. J Mol Liq [Internet]. 2019;282:407–14. Available from: http://www.sciencedirect.com/science/article/pii/S0167732219305458
Zainuddin N, Ahmad I, Kargarzadeh H, Ramli S. Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin. Carbohydr Polym [Internet]. 2017;163:261–9. Available from: http://www.sciencedirect.com/science/article/pii/S014486171730036X
Rioux B, Pouget C, Ndong-Ntoutoume GMA, Granet R, Gamond A, Laurent A, et al. Enhancement of hydrosolubility and in vitro antiproliferative properties of chalcones following encapsulation into β-cyclodextrin/cellulose-nanocrystal complexes. Bioorg Med Chem Lett [Internet]. 2019;29(15):1895–8. Available from: http://www.sciencedirect.com/science/article/pii/S0960894X19303622
Thomas D, Latha MS, Thomas KK. Synthesis and in vitro evaluation of alginate-cellulose nanocrystal hybrid nanoparticles for the controlled oral delivery of rifampicin. J Drug Deliv Sci Technol [Internet]. 2018;46:392–9. Available from: http://www.sciencedirect.com/science/article/pii/S1773224717308535
Shanmugapriya K, Kim H, Lee YW, Kang HW. Cellulose nanocrystals/nanofibrils loaded astaxanthin nanoemulsion for the induction of apoptosis via ROS-dependent mitochondrial dysfunction in cancer cells under photobiomodulation. Int J Biol Macromol [Internet]. 2020;149:165–77. Available from: http://www.sciencedirect.com/science/article/pii/S0141813019403620
Orasugh JT, Sarkar G, Saha NR, Das B, Bhattacharyya A, Das S, et al. Effect of cellulose nanocrystals on the performance of drug loaded in situ gelling thermo-responsive ophthalmic formulations. Int J Biol Macromol [Internet]. 2019;124:235–45. Available from: http://www.sciencedirect.com/science/article/pii/S0141813018352425
Orasugh JT, Saha NR, Sarkar G, Rana D, Mondal D, Ghosh SK, et al. A facile comparative approach towards utilization of waste cotton lint for the synthesis of nano-crystalline cellulose crystals along with acid recovery. Int J Biol Macromol. 2018;109:1246–52.
Yan H, Chen X, Feng M, Shi Z, Zhang W, Wang Y, et al. Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery. Colloids Surfaces B Biointerfaces [Internet]. 2019;177:112–20. Available from: http://www.sciencedirect.com/science/article/pii/S0927776519300578
Blanco A, Monte MC, Campano C, Balea A, Merayo N, Negro C. Chapter 5 - Nanocellulose for Industrial Use: Cellulose Nanofibers (CNF), Cellulose Nanocrystals (CNC), and Bacterial Cellulose (BC). In: Mustansar Hussain CBT-H of N for IA, editor. Micro and Nano Technologies [Internet]. Elsevier; 2018. p. 74–126. Available from: http://www.sciencedirect.com/science/article/pii/B9780128133514000055
Xing L, Hu C, Zhang W, Guan L, Gu J. Transition of cellulose supramolecular structure during concentrated acid treatment and its implication for cellulose nanocrystal yield. Carbohydr Polym [Internet]. 2020;229:115539. Available from: http://www.sciencedirect.com/science/article/pii/S014486171931207X
Doh H, Lee MH, Whiteside WS. Physicochemical characteristics of cellulose nanocrystals isolated from seaweed biomass. Food Hydrocoll [Internet]. 2020;102:105542. Available from: http://www.sciencedirect.com/science/article/pii/S0268005X19315516
Peng Zhang P, Shen Tong D, Lin CX, Min Yang H, Ke Zhong Z, Hua Yu W, et al. Effects of acid treatments on bamboo cellulose nanocrystals. Vol. 9, Asia-Pacific Journal of Chemical Engineering. 2014.
Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C. Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis. Vol. 14, Biomacromolecules. 2013.
Beltramino F, Blanca Roncero M, Vidal T, Valls C. A novel enzymatic approach to nanocrystalline cellulose preparation. Carbohydr Polym [Internet]. 2018;189:39–47. Available from: http://www.sciencedirect.com/science/article/pii/S014486171830153X
Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L. Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A [Internet]. 2013;1(12):3938–44. Available from: http://dx.doi.org/10.1039/C3TA01150J
Cheng M, Qin Z, Hu J, Liu Q, Wei T, Li W, et al. Facile and rapid one–step extraction of carboxylated cellulose nanocrystals by H2SO4/HNO3 mixed acid hydrolysis. Carbohydr Polym [Internet]. 2020;231:115701. Available from: http://www.sciencedirect.com/science/article/pii/S0144861719313694
Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40(7):3941–94.
Peng Y, Gardner D, Han Y, Kiziltas A, Cai Z, Tshabalala M. Influence of drying method on the material properties of nanocellulose I: Thermostability and crystallinity. Vol. 20, Cellulose. 2013. 2379–2392 p.
Desai P, Valeria Liew C, Wan Sia Heng P. Review of Disintegrants and the Disintegration Phenomena. Vol. 105, Journal of Pharmaceutical Sciences. 2016.
Rojas J, Kumar V. Evaluation of the disintegration properties of microcrystalline cellulose II and commercial disintegrants. Pharmazie. 2012 Jun;67(6):500–6.
Mantas A, Labbe V, Loryan I, Mihranyan A. Amorphisation of Free Acid Ibuprofen and Other Profens in Mixtures with Nanocellulose: Dry Powder Formulation Strategy for Enhanced Solubility. Vol. 11, Pharmaceutics. 2019. 68 p.
Mantas A, Mihranyan A. Immediate-Release Nifedipine Binary Dry Powder Mixtures with Nanocellulose Featuring Enhanced Solubility and Dissolution Rate. Vol. 11, Pharmaceutics. 2019. 37 p.
Löbmann K, Wohlert J, Müllertz A, Wågberg L, Svagan A. Cellulose Nanopaper and Nanofoam for Patient-Tailored Drug Delivery. Vol. 4, Advanced Materials Interfaces. 2017. 1600655 p.
Wang C, Huang H, Jia M, Jin S, Zhao W, Cha R. Formulation and evaluation of nanocrystalline cellulose as a potential disintegrant. Carbohydr Polym [Internet]. 2015;130:275–9. Available from: http://www.sciencedirect.com/science/article/pii/S0144861715004051
Lin Y-J, Shatkin JA, Kong F. Evaluating mucoadhesion properties of three types of nanocellulose in the gastrointestinal tract in vitro and ex vivo. Carbohydr Polym [Internet]. 2019;210:157–66. Available from: http://www.sciencedirect.com/science/article/pii/S0144861719300426
Gurtovenko AA, Mukhamadiarov EI, Kostritskii AY, Karttunen M. Phospholipid–Cellulose Interactions: Insight from Atomistic Computer Simulations for Understanding the Impact of Cellulose-Based Materials on Plasma Membranes. J Phys Chem B [Internet]. 2018 Nov 1;122(43):9973–81. Available from: https://doi.org/10.1021/acs.jpcb.8b07765
Borchard G, Luessen H, Boer A, Verhoef JC, Lehr C-M, E. Junginger H. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III: Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. Vol. 39, Journal of Controlled Release. 1996. 131–138 p.
Xiao Y, Liu Y, Wang X, Li M, Lei H, Xu H. Cellulose nanocrystals prepared from wheat bran: Characterization and cytotoxicity assessment. Int J Biol Macromol [Internet]. 2019;140:225–33. Available from: http://www.sciencedirect.com/science/article/pii/S0141813019331332
Catalán J, Ilves M, Järventaus H, Hannukainen K, Kontturi E, Vanhala E, et al. Genotoxic and immunotoxic effects of cellulose nanocrystals in vitro. Environ Mol Mutagen. 2015 Mar 1;56:171–82.
Kim SM, Ji Gwak E, Jeong SH, Lee SM, Sim WJ. Toxicity Evaluation of Cellulose Nanofibers (Cnfs) for Cosmetic Industry Application. J Toxicol Risk Assess. 2019;5:29.
Refbacks
- There are currently no refbacks.