Structure-Based Virtual Screening and Molecular Dynamics of Quercetin and Its Natural Derivatives as Potent Oxidative Stress Modulators in ROS-induced Cancer
Abstract
References
Alhassan A, Abdullahi M, Uba A, Umar A (2014) Prenylation of Aromatic Secondary Metabolites: A New Frontier for Development of Novel Drugs. Trop J Pharm Res 13:307. doi: 10.4314/tjpr.v13i2.22
Arora S, Lohiya G, Moharir K, Shah S, Yende S (2020) Identification of Potential Flavonoid Inhibitors of the SARS-CoV-2 Main Protease 6YNQ: A Molecular Docking Study. Digit Chinese Med 3:239–248. doi: 10.1016/j.dcmed.2020.12.003
Bauer G (2012) Tumor cell-protective catalase as a novel target for rational therapeutic approaches based on specific intercellular ROS signaling. Anticancer Res 32:2599–2624
Bindoli A, Valente M, Cavallini L (1985) Inhibitory action of quercetin on xanthine oxidase and xanthine dehydrogenase activity. Pharmacol Res Commun 17:831–839. doi: 10.1016/0031-6989(85)90041-4
Bishayee K, Khuda-Bukhsh AR (2013) 5-Lipoxygenase Antagonist therapy: a new approach towards targeted cancer chemotherapy. Acta Biochim Biophys Sin (Shanghai) 45:709–719. doi: 10.1093/abbs/gmt064
Botta B, Vitali A, Menendez P, Misiti D, Monache G (2005) Prenylated Flavonoids: Pharmacology and Biotechnology. Curr Med Chem 12:713–739. doi: 10.2174/0929867053202241
Chen B, Shen Z, Wu D, Xie X, Xu X, Lv L, Dai H, Chen J, Gan X (2019) Glutathione Peroxidase 1 Promotes NSCLC Resistance to Cisplatin via ROS-Induced Activation of PI3K/AKT Pathway. Biomed Res Int 2019:1–12. doi: 10.1155/2019/7640547
Degroote J, Vergauwen H, Van Noten N, Wang W, De Smet S, Van Ginneken C, Michiels J (2019) The Effect of Dietary Quercetin on the Glutathione Redox System and Small Intestinal Functionality of Weaned Piglets. Antioxidants 8:312. doi: 10.3390/antiox8080312
Doucet MS, Jougleux J-L, Poirier SJ, Cormier M, Léger JL, Surette ME, Pichaud N, Touaibia M, Boudreau LH (2019) Identification of Peracetylated Quercetin as a Selective 12-Lipoxygenase Pathway Inhibitor in Human Platelets. Mol Pharmacol 95:139–150. doi: 10.1124/mol.118.113480
Gào X, Schöttker B (2017) Reduction-oxidation pathways involved in cancer development: a systematic review of literature reviews. Oncotarget 8:51888–51906. doi: 10.18632/oncotarget.17128
Glorieux C, Calderon PB (2018) Catalase down-regulation in cancer cells exposed to arsenic trioxide is involved in their increased sensitivity to a pro-oxidant treatment. Cancer Cell Int 18:24. doi: 10.1186/s12935-018-0524-0
Goh J, Enns L, Fatemie S, Hopkins H, Morton J, Pettan-Brewer C, Ladiges W (2011) Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer 11:191. doi: 10.1186/1471-2407-11-191
Hošek J, Toniolo A, Neuwirth O, Bolego C (2013) Prenylated and Geranylated Flavonoids Increase Production of Reactive Oxygen Species in Mouse Macrophages but Inhibit the Inflammatory Response. J Nat Prod 76:1586–1591. doi: 10.1021/np400242e
Kennedy L, Sandhu JK, Harper ME, Cuperlovic‐culf M (2020) Role of glutathione in cancer: From mechanisms to therapies. Biomolecules 10:1–27. doi: 10.3390/biom10101429
Kurcinski M, Oleniecki T, Ciemny MP, Kuriata A, Kolinski A, Kmiecik S (2019) CABS-flex standalone: a simulation environment for fast modeling of protein flexibility. Bioinformatics 35:694–695. doi: 10.1093/bioinformatics/bty685
Landry WD, Cotter TG (2014) ROS signalling, NADPH oxidases and cancer. Biochem Soc Trans 42:934–938. doi: 10.1042/BST20140060
Luo M, Tian R, Lu N (2020) Quercetin Inhibited Endothelial Dysfunction and Atherosclerosis in Apolipoprotein E-Deficient Mice: Critical Roles for NADPH Oxidase and Heme Oxygenase-1. J Agric Food Chem 68:10875–10883. doi: 10.1021/acs.jafc.0c03907
Luo M, Tian R, Yang Z, Peng Y-Y, Lu N (2019) Quercetin suppressed NADPH oxidase-derived oxidative stress via heme oxygenase-1 induction in macrophages. Arch Biochem Biophys 671:69–76. doi: 10.1016/j.abb.2019.06.007
Martín MJ, La -Casa C, Alarcón-de-la-Lastra C, Cabeza J, Villegas I, Motilva V (1998) Anti-Oxidant Mechanisms Involved in Gastroprotective Effects of Quercetin. Zeitschrift für Naturforsch C 53:82–88. doi: 10.1515/znc-1998-1-215
Massi A, Bortolini O, Ragno D, Bernardi T, Sacchetti G, Tacchini M, De Risi C (2017) Research Progress in the Modification of Quercetin Leading to Anticancer Agents. Molecules 22:1270. doi: 10.3390/molecules22081270
Materska M (2008) Quercetin and Its Derivatives : Chemical Structure and Bioactivity -a Review. Polish J food Nutr Sci 58:407–413
Meitzler JL, Antony S, Wu Y, Juhasz A, Liu H, Jiang G, Lu J, Roy K, Doroshow JH (2014) NADPH Oxidases: A Perspective on Reactive Oxygen Species Production in Tumor Biology. Antioxid Redox Signal 20:2873–2889. doi: 10.1089/ars.2013.5603
Muchtaridi YA, Megantara S, Purnomo H (2018) Kimia Medisinal: Dasar-Dasar dalam Perancangan Obat (Pertama). Prenamedia Group, Jakarta
Mukai R (2018) Prenylation enhances the biological activity of dietary flavonoids by altering their bioavailability. Biosci Biotechnol Biochem 82:207–215. doi: 10.1080/09168451.2017.1415750
Oh S-H, Choi S-Y, Choi H-J, Ryu H-M, Kim Y-J, Jung H-Y, Cho J-H, Kim C-D, Park S-H, Kwon T-H, Kim Y-L (2019) The emerging role of xanthine oxidase inhibition for suppression of breast cancer cell migration and metastasis associated with hypercholesterolemia. FASEB J 33:7301–7314. doi: 10.1096/fj.201802415RR
Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47. doi: 10.1017/jns.2016.41
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med 49:1603–1616. doi: 10.1016/j.freeradbiomed.2010.09.006
Sanda V, Ioana S, Socaciu C, Nagaya T, Oduor Ogola HJ, Yokota K, Nishimura K, Jisak M (2012) Lipoxygenase-Quercetin Interaction: A Kinetic Study Through Biochemical and Spectroscopy Approaches. In: Biochemical Testing. InTech
Sandhir R, Mehrotra A (2013) Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: Implications in Huntington’s disease. Biochim Biophys Acta - Mol Basis Dis 1832:421–430. doi: 10.1016/j.bbadis.2012.11.018
Sroka Z, Sowa A, Dryś A (2017) Inhibition of lipoxygenase and peroxidase reaction by some flavonols and flavones: The structure-activity relationship. Nat Prod Commun 12:1705–1708. doi: 10.1177/1934578x1701201111
Subramanian P, Mendez EF, Becerra SP (2016) A Novel Inhibitor of 5-Lipoxygenase (5-LOX) Prevents Oxidative Stress–Induced Cell Death of Retinal Pigment Epithelium (RPE) Cells. Investig Opthalmology Vis Sci 57:4581. doi: 10.1167/iovs.15-19039
Umar AK (2021) Flavonoid compounds of buah merah (Pandanus conoideus Lamk) as a potent SARS-CoV-2 main protease inhibitor: in silico approach. Futur J Pharm Sci 7:0–8. doi: 10.1186/s43094-021-00309-0
Vafadar A, Shabaninejad Z, Movahedpour A, Fallahi F, Taghavipour M, Ghasemi Y, Akbari M, Shafiee A, Hajighadimi S, Moradizarmehri S, Razi E, Savardashtaki A, Mirzaei H (2020) Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells. Cell Biosci 10:32. doi: 10.1186/s13578-020-00397-0
Wang Y, Branicky R, Noë A, Hekimi S (2018) Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217:1915–1928. doi: 10.1083/jcb.201708007
Ward AB, Mir H, Kapur N, Gales DN, Carriere PP, Singh S (2018) Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World J Surg Oncol 16:108. doi: 10.1186/s12957-018-1400-z
Weinberg F, Chandel NS (2009) Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci 66:3663–3673. doi: 10.1007/s00018-009-0099-y
Xu D, Hu MJ, Wang YQ, Cui YL (2019) Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 24. doi: 10.3390/molecules24061123
Zhang Y, Wang D, Yang L, Zhou D, Zhang J (2014) Purification and Characterization of Flavonoids from the Leaves of Zanthoxylum bungeanum and Correlation between Their Structure and Antioxidant Activity. PLoS One 9:e105725. doi: 10.1371/journal.pone.0105725
Zheng Y-Z, Deng G, Liang Q, Chen D-F, Guo R, Lai R-C (2017) Antioxidant Activity of Quercetin and Its Glucosides from Propolis: A Theoretical Study. Sci Rep 7:7543. doi: 10.1038/s41598-017-08024-8
Refbacks
- There are currently no refbacks.