Analisis Gugus Fungsi, Morfologi dan Ukuran Partikel Manganese Ferrite yang Disintesis dari Pasir Besi
Abstract
Manganese ferrite (Mn ferrite) telah berhasil disintesis dengan metode kopresipitasi pada suhu 60 ℃. Mn ferrite disintesis dari pasir besi sebagai prekusornya. Tujuan dari penelitian ini untuk mensintesis Mn ferrite dari pasir besi dan menganalisis gugus fungsi serta morfologinya. Sampel dibuat dengan memvariasikan NaOH yaitu 3 M, 6 M dan 9 M. Struktur kristal, gugus fungsi dan morfologi dikarakterisasi dengan X-ray Difractometer (XRD), Fourier Transform Infra Red (FTIR), dan Transmission Electron Microscopy (TEM). Hasil spektra FTIR mengkonfirmasi adanya gugus fungsi metal-oxide (M-O) pada kisi tetrahedral dan oktahedral pada bilangan gelombang masing-masing 462 cm-1 dan 578 cm-1. Hal ini diidetifikasi sebagai gugus Mn-O dan Fe-O sekaligus mengkonfirmasi pembentukan struktur spinel. Pengamatan morfologi menunjukkan bahwa sampel terlihat mengalami aglomerasi karena adanya interaksi magnetik. Hasil pengamatan ukuran partikel berada pada kisaran 30 – 50 nm yang diukur menggunakan software Image-J. Ukuran butir terlihat lebih besar dibandingkan hasil perhitungan ukuran kristalit berdasarkan data XRD karena sampel mengalami aglomerasi sehingga beberapa butir menggumpal menjadi satu dan terlihat seperti satu partikel.
Kata kunci: Mn-ferrite, gugus fungsi, morfologi, ukuran partikel
Full Text:
PDF (Bahasa Indonesia)References
P. Thakur, D. Chahar, S. Taneja, N. Bhalla, and A. Thakur, “A review on MnZn ferrites: Synthesis, characterization and applications,” Ceramics International, vol. 46, no. 10. Elsevier Ltd, pp. 15740–15763, Jul. 01, 2020. doi: 10.1016/j.ceramint.2020.03.287.
A. Yulianto and M. Prasetya Aji, “Fabrikasi Mn-Zn Ferit dari Bahan Alam Pasir Besi serta Aplikasinya untuk Core Inductor,” 2010.
P. Muharam et al., “Pasir Besi di Indonesia, Geologi, eksplorasi dan Pemanfaatannya,” 2014. [Online]. Available: http://psdg.bgl.esdm.go.id
A. R. Liandi et al., “Recent trends of spinel ferrites (MFe2O4: Mn, Co, Ni, Cu, Zn) applications as an environmentally friendly catalyst in multicomponent reactions: A review,” Case Studies in Chemical and Environmental Engineering, vol. 7, p. 100303, 2023, doi: https://doi.org/10.1016/j.cscee.2023.100303.
M. Sundararajan, L. J. Kennedy, U. Aruldoss, Sk. K. Pasha, J. J. Vijaya, and S. Dunn, “Microwave combustion synthesis of zinc substituted nanocrystalline spinel cobalt ferrite: Structural and magnetic studies,” Mater Sci Semicond Process, vol. 40, pp. 1–10, 2015, doi: https://doi.org/10.1016/j.mssp.2015.06.002.
E. Muntean, M. Stoia, and C. Păcurariu, “Facile synthesis, characterization and magnetic properties of manganese ferrite/carbon composites,” Thermochim Acta, vol. 667, pp. 122–131, Sep. 2018, doi: 10.1016/j.tca.2018.07.015.
M. Arshad et al., “Structural and magnetic properties variation of manganese ferrites via Co-Ni substitution,” J Magn Magn Mater, vol. 474, pp. 98–103, Mar. 2019, doi: 10.1016/j.jmmm.2018.10.141.
X. Zhao et al., “Magnetic transformation of Zn substituted Ni–Co ferrite nanoparticles,” Journal of Materials Science: Materials in Electronics, vol. 31, pp. 526–541, 2019.
S. A. Mazen and N. I. Abu-Elsaad, “Structural and some magnetic properties of manganese-substituted lithium ferrites,” J Magn Magn Mater, vol. 324, no. 20, pp. 3366–3373, Oct. 2012, doi: 10.1016/j.jmmm.2012.05.056.
K. Kondo, T. Chiba, and S. Yamada, “Effect of microstructure on magnetic properties of Ni-Zn ferrites,” J Magn Magn Mater, vol. 254–255, pp. 541–543, 2003, doi: 10.1016/S0304-8853(02)00859-4.
I. Sharifi and H. Shokrollahi, “Structural, Magnetic and Mössbauer evaluation of Mn substituted Co–Zn ferrite nanoparticles synthesized by co-precipitation,” J Magn Magn Mater, vol. 334, pp. 36–40, 2013, doi: 10.1016/j.jmmm.2013.01.021.
H. Anwar and A. Maqsood, “Comparison of structural and electrical properties of Co2+doped Mn-Zn soft nano ferrites prepared via coprecipitation and hydrothermal methods,” Mater Res Bull, vol. 49, no. 1, pp. 426–433, 2014, doi: 10.1016/j.materresbull.2013.09.009.
H. Kiswanto, A. Puspitasari, E. Suharyadi, T. Kato, and S. Iwata, “Effect of Zinc on Crystal Structure and Magnetic Properties of Co1-xZnxFe2O4 Nanoparticles Synthesized by Coprecipitation Method,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jun. 2018. doi: 10.1088/1757-899X/367/1/012001.
M. Sundararajan, L. J. Kennedy, U. Aruldoss, S. K. Pasha, J. J. Vijaya, and S. Dunn, “Microwave combustion synthesis of zinc substituted nanocrystalline spinel cobalt ferrite: Structural and magnetic studies,” Mater Sci Semicond Process, vol. 40, pp. 1–10, Jul. 2015, doi: 10.1016/j.mssp.2015.06.002.
S. Sarmah, Aakansha, P. K. Maji, S. Ravi, and T. Bora, “Effect of cation distribution and temperature variation on magnetic and dielectric properties of manganese substituted cobalt ferrites,” Solid State Commun, vol. 324, Feb. 2021, doi: 10.1016/j.ssc.2020.114146.
H. Kiswanto, “Analisis Perubahan Struktur Kristal dan Distribusi Kation Cobalt Ferrite Akibat Subtitusi Zinc,” JIIF (Jurnal Ilmu dan Inovasi Fisika), vol. 4, no. 2, pp. 155–163, 2020.
K. El-Sayed, M. B. Mohamed, Sh. Hamdy, and S. S. Ata-Allah, “Effect of synthesis methods with different annealing temperatures on micro structure, cations distribution and magnetic properties of nano-nickel ferrite,” J Magn Magn Mater, vol. 423, pp. 291–300, 2017, doi: https://doi.org/10.1016/j.jmmm.2016.09.100.
B. Y. Boucher, R. Buhl, and M. Perrin, “Three‐Sublattice Ferrimagnetic Structure,” J Appl Phys, vol. 38, no. 3, pp. 1109–1110, Mar. 1967, doi: 10.1063/1.1709504.
R. J. D. Tilley, Crystals and Crystal Structures. Wiley, 2006. [Online]. Available: https://books.google.co.id/books?id=ilVvOYOFCx8C
H. Kiswanto, A. H. P. Yuniarto, N. I. Istiqomah, and E. Suharyadi, “Struktur Kristal dan Sifat Kemagnetan Nanopartikel Mn-Ferrite yang Disintesis dari Bahan Alam Pasir Besi,” Jurnal Fisika Unand, vol. 10, no. 4, pp. 413–420, 2021.
DOI: https://doi.org/10.24198/jiif.v7i2.47022
Refbacks
- There are currently no refbacks.





