CBDR-CNN Approach for Rapid Identification of XRD Data: A Preliminary Study
Abstract
Full Text:
PDFReferences
Y. Waseda, E. Matsubara, and K. Shinoda, X-{Ray} {Diffraction} {Crystallography}:
{Introduction}, {Examples} and {Solved} {Problems}. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011.
W. B. Park et al., “Classification of crystal structure using a convolutional neural
network,” IUCrJ, vol. 4, no. 4, pp. 486–494, Jul. 2017, doi:
1107/S205225251700714X.
A. Altomare, C. Cuocci, G. D. Gatta, A. Moliterni, and R. Rizzi, “Methods of
crystallography: powder {X}-ray diffraction,” in Mineralogical {Crystallography}, 1st ed.,
J. Plášil, J. Majzlan, and S. Krivovichev, Eds. Mineralogical Society of Great Britain &
Ireland, 2017, pp. 79–138.
M. Tatlier, “Artificial neural network methods for the prediction of framework crystal
structures of zeolites from {XRD} data,” Neural Comput. Appl., vol. 20, no. 3, pp. 365–
, Apr. 2011, doi: 10.1007/s00521-010-0386-4.
S. M. Obeidat, I. Al-Momani, A. Haddad, and M. Bani Yasein, “Combination of {ICP}-
{OES}, {XRF} and {XRD} techniques for analysis of several dental ceramics and their
identification using chemometrics,” Spectroscopy, vol. 26, no. 2, pp. 141–149, 2011, doi:
1155/2011/894143.
D. Lee, H. Lee, C.-H. Jun, and C. H. Chang, “A {Variable} {Selection} {Procedure} for
{X}-ray {Diffraction} {Phase} {Analysis},” Appl. Spectrosc., vol. 61, no. 12, pp. 1398–
, Dec. 2007, doi: 10.1366/000370207783292127.
C. J. Gilmore, G. Barr, and J. Paisley, “High-throughput powder diffraction. {I}. {A} new
approach to qualitative and quantitative powder diffraction pattern analysis using full
pattern profiles,” J. Appl. Crystallogr., vol. 37, no. 2, pp. 231–242, Apr. 2004, doi:
1107/S002188980400038X.
A. Ziletti, D. Kumar, M. Scheffler, and L. M. Ghiringhelli, “Insightful classification of
crystal structures using deep learning,” Nat. Commun., vol. 9, no. 1, p. 2775, Jul. 2018,
doi: 10.1038/s41467-018-05169-6.
F. Oviedo, “Fast and interpretable classification of small {X}-ray diffraction datasets using
data augmentation and deep neural networks,” npj Comput. Mater., 2019.
V. Tyagi, Content-{Based} {Image} {Retrieval}. Singapore: Springer Singapore, 2017.
R. Suwanda, Z. Syahputra, and E. M. Zamzami, “Analysis of {Euclidean} {Distance} and
{Manhattan} {Distance} in the {K}-{Means} {Algorithm} for {Variations} {Number} of
{Centroid} {K},” J. Phys. Conf. Ser., vol. 1566, no. 1, p. 12058, Jun. 2020, doi:
1088/1742-6596/1566/1/012058.
N. K. Manaswi, Deep {Learning} with {Applications} {Using} {Python}. Berkeley, CA:
Apress, 2018.
M. Zufar and B. Setiyono, “Convolutional Neural Networks Untuk Pengenalan Wajah
Secara Real-Time,” J. Sains dan Seni ITS, vol. 5, no. 2, p. 128862, 2016.
C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation {Functions}:
{Comparison} of trends in {Practice} and {Research} for {Deep} {Learning}.” arXiv,
Nov. 2018, Accessed: Jul. 12, 2023. [Online]. Available: http://arxiv.org/abs/1811.03378.
DOI: https://doi.org/10.24198/jiif.v8i1.49575
Refbacks
- There are currently no refbacks.





