Characterization nanosuspension formulated with Graptophyllum pictum (L.) Griff extract and hydroxyapatite as bone graft material: experimental laboratory study

Kavanila Bilbalqish, Devi Rianti, Ratri Maya Sitalaksmi, Khairul Anuar bin Shariff

Abstract


ABSTRACT 

Introduction: Hydroxyapatite is a major component of the inorganic minerals in the hard tissues of humans and has been widely used as a biomedical ceramic material in orthopedic and dentistry applications. Adding natural ingredients such as Graptophyllum pictum can increase the anti-inflammatory properties due to the presence of phenolic compounds and alkaloids. The aim of this study was to determine the characterization nanosuspension formulated with Graptophyllum pictum (L.) Griff extract and hydroxyapatite. Methods: Nanosuspension were characterized using Scanning Electron Microscopy (SEM), Electron Dispersive X-ray analysis (EDX), Fourier Transform Infrared Spectroscopy (FTIR), and Liquid Chromatography Mass Spectrometry (LCMS). These evaluations were to reveal the surface morphology, elemental composition, functional groups, and identify the active metabolite of the nanosuspension. Results: SEM revealed the morphology agglomeration of spherical hydroxyapatite particles. The EDX analysis revealed a content of carbon, oxygen, sodium, phosphorus, chlorine, potassium, and calcium with Ca/P ratio 1.47. The FTIR analysis identified hydroxyl, water molecules, carbonate, carbonyl, and phosphate groups in the sample. LC-MS analysis identified 49 active metabolites such as phenols, alkaloid, fatty acids and their derivatives, amino acids, carbohydrates, carboxylic acids, alcohols, and ketones from the sample. Conclusion: The characteristics of nanosuspension formulated with Graptophyllum pictum (L.) Griff extract and hydroxyapatite are similar to those of natural bones.

 

Keywords

characterization, Graptophyllum pictum, hydroxyapatite, nanosuspension

 

Karakterisasi nano suspensi ekstrak Graptophyllum pictum (L.) Griff dan hidroksiapatit sebagai material bone graft: penelitian eksperimental laboratoris

 

ABSTRAK 

Pendahuluan: Hidroksiapatit merupakan komponen utama mineral anorganik pada jaringan keras manusia dan telah banyak digunakan sebagai keramik di bidang biomedis ortopedi dan kedokteran gigi. Penambahan bahan alami seperti Graptophyllum pictum dapat meningkatkan sifat antiinflamasi karena adanya senyawa fenolik dan alkaloid. Tujuan penelitian ini adalah mengetahui karakterisasi nanosuspensi yang diformulasikan dengan ekstrak Graptophyllum pictum (L.) Griff dan hidroksiapatit. Metode: Nanosuspensi dikarakterisasi menggunakan Scanning Electron Microscopy (SEM), Electron Dispersive X-ray analysis (EDX), Fourier Transform Independent Spectroskopi (FTIR), dan Liquid Chromatography Mass Spectrometry (LCMS). Evaluasi ini dilakukan untuk menunjukkan morfologi permukaan, komposisi unsur, gugus fungsi, dan mengidentifikasi metabolit aktif nanosuspensi. Hasil: SEM menunjukkan aglomerasi morfologi partikel hidroksiapatit berbentuk bulat. Analisis EDX menunjukkan kandungan karbon, oksigen, natrium, fosfor, klorin, kalium, dan kalsium dengan rasio Ca/P 1,47. Analisis FTIR mengidentifikasi gugus hidroksil, molekul air, karbonat, karbonil, dan fosfat dalam sampel. Analisis LC-MS mengidentifikasi 49 metabolit aktif seperti fenol, alkaloid, asam lemak dan turunannya, asam amino, karbohidrat, asam karboksilat, alkohol, dan keton dari sampel. Simpulan: Karakteristik nanosuspensi yang diformulasikan dengan ekstrak Graptophyllum pictum (L.) Griff dan hidroksiapatit mirip dengan tulang alami.

 

Kata kunci

karakterisasi, Graptophyllum pictum, hidroksiapatit, nanosuspensi


Keywords


characterization; graptophyllum pictum; hydroxyapatite; nanosuspension

Full Text:

PDF

References


Lee H, Noh K, Lee DW. Bone Regeneration in the Extraction Socket Filled with Atelocollagen: Histological and Radiographic Study in Beagle Dogs. Journal of Korean Dental Science. 2016: 9(2):55–62. DOI: https://doi.org/10.5856/jkds.2016.9.2.55

Nurlindah Hamrun, Alya Hilda Saifuddin, Alya Khaerunnisa I Day, Hemayu Aditung, Sri Handayani Saharuddin, Megatriani Matandung, et al. Role of fucoidan in stimulating osteoblast cells in alveolar bone loss. Makassar Dental Journal. 2022: 11(2):229–34. DOI: https://doi.org/10.35856/mdj.v11i2.602

Annunziata M, Guida L, Nastri L, Piccirillo A, Sommese L, Napoli C. The Role of Autologous Platelet Concentrates in Alveolar Socket Preservation: A Systematic Review. Transfusion Medicine and Hemotherapy. 2018: 45(3):195–203. DOI: https://doi.org/10.1159/000488061

Yip I, Ma L, Mattheos N, Dard M, Lang NP. Defect healing with various bone substitutes. Clin Oral Implants Res. 2015: 26(5):606–14. DOI: https://doi.org/10.1159/000488061

Halim NAA, Hussein MZ, Kandar MK. Nanomaterials-upconverted hydroxyapatite for bone tissue engineering and a platform for drug delivery. Int J Nanomedicine. 2021: 16:6477–96. DOI: https://doi.org/10.2147/IJN.S298936

Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite–-Past, Present, and Future in Bone Regeneration. Bone Tissue Regen Insights. 2016: 7:BTRI.S36138. DOI: https://doi.org/10.4137/btri.s36138

Bretschneider H, Quade M, Lode A, Gelinsky M, Rammelt S, Vater C. Chemotactic and angiogenic potential of mineralized collagen scaffolds functionalized with naturally occurring bioactive factor mixtures to stimulate bone regeneration. Int J Mol Sci. 2021: 22(11). DOI: https://doi.org/10.3390/ijms22115836

Fatehi P, Abbasi M. Medicinal plants used in wound dressings made of electrospun nanofibers. Vol. 14, Journal of Tissue Engineering and Regenerative Medicine. John Wiley and Sons Ltd; 2020. p. 1527–48. DOI: https://doi.org/10.1002/term.3119

Rachim SA, Kurniawati A, Astuti P. The Effect of Purple Leaf Extract (Graptophyllum pictum L. Griff) to The Amount of Fibroblast in Gingiva Rat Wistar induced by Porphyromonas gingivalis. Denta Jurnal Kedokteran Gigi. 2020: 14(2):94–100. DOI: https://doi.org/10.30649/denta.v14i2

Dhywinanda DE, Dien SN, Chairuly HD, Sakti GR, Tandra RJRF, Kartikasari N, et al. Essential of Graptophyllum pictum for the medical and dental purposes. Indonesian Journal of Dental Medicine. 2023: 6(2):83–8. DOI: 10.20473/ijdm.v6i2.2023.83-88

Goswami M, Ojha A, Mehra M. A Narrative literature review on Phytopharmacology of a Caricature Plant: Graptophyllum pictum (L.) Griff. (Syn: Justicia picta Linn.). Asian Pacific Journal of Health Sciences. 2021: 8(3):44–7. DOI: https://doi.org/10.21276/apjhs.2021.8.3.10)

Makkiyah FA, Rahmi EP, Mahendra FR, Maulana F, Arista RA, Nurcholis W. Polyphenol content and antioxidant capacities of Graptophyllum pictum (L.) extracts using in vitro methods combined with the untargeted metabolomic study. J Appl Pharm Sci. 2024: 14(3):55–63. DOI: https://doi.org/10.7324/JAPS.2024.153548

Brahmantyo MR, Nirwana I, Rianti DD. Application of purple leaf extract (Graptophyllum pictum) in wound healing process of collagen density. International Journal of Pharmaceutical Research. 2020: 12(4):1541–5. DOI: https://doi.org/10.31838/ijpr/2020.12.04.218

Nugraha AP, Triwardhani A, Sitalaksmi RM, Ramadhani NF, Luthfi M, Ulfa NM, et al. Phytochemical, antioxidant, and antibacterial activity of Moringa oleifera nanosuspension against peri-implantitis bacteria: An in vitro study. J Oral Biol Craniofac Res. 2023: 13(6):720–6. DOI: https://doi.org/10.1016/j.jobcr.2023.09.004

Rianti D, Kristanto W, Damayanti H, Putri TS, Dinaryanti A, Syahrom A, et al. The Characteristics and Potency of Limestone-based carbonate hydroxyapatite to Viability and Proliferation of Human Umbilical Cord Mesenchymal Stem Cell. Res J Pharm Technol. 2022: 15(5):2285–92. DOI: https://doi.org/10.52711/0974-360X.2022.00380

Abdullah A, Nurjanah N, Reyhan M. Identification and Profiling of Active Compounds from Golden Apple Snail’s Egg Pigments. J Pengolah Has Perikan Indones. 2017: 20(2):286. DOI: https://doi.org/10.17844/jphpi.v20i2.17909

Sobczak-Kupiec A, Malina D, Pia̧tkowski M, Krupa-Zuczek K, Wzorek Z, Tyliszczak B. Physicochemical and biological properties of hydrogel/gelatin/ hydroxyapatite PAA/G/HAp/AgNPs composites modified with silver nanoparticles. J Nanosci Nanotechnol. 2012: 12(12):9302–11. DOI: https://doi.org/10.1166/jnn.2012.6756

Fadli A, Akbar F, Putri P, Pratiwi DI, Muhara I. Hydroxyapatite Powder Prepared by Low Temperature Hydrothermal Method from Sea Shells. The 1st Conference on Ocean, Mechanical and Aerospace; 2014 Nov 19.

Jackson P, Robinson K, Puxty G, Attalla M. In situ Fourier Transform-Infrared (FT-IR) analysis of carbon dioxide absorption and desorption in amine solutions. In: Energy Procedia. 2009: 985–94. DOI: https://doi.org/10.1016/j.egypro.2009.01.131

Ganta DD, Hirpaye BY, Raghavanpillai SK, Menber SY. Green Synthesis of Hydroxyapatite Nanoparticles Using Monoon longifolium Leaf Extract for Removal of Fluoride from Aqueous Solution. J Chem. 2022: 2022. DOI: https://doi.org/10.1155/2022/4917604

Muhammad M, Marwan M, Munawar E, Zaki M. Experimental study of CO2 utilization as a density modification agent for maximizing palm shells and kernels separation efficiency. S Afr J Chem Eng. 2022: 42:283–9. DOI: https://doi.org/10.1016/j.sajce.2022.09.006

Kartikasari N, Yuliati A, Listiana I, Setijanto D, Suardita K, Ariani MD, et al. Characteristic of bovine hydroxyapatite-gelatin-chitosan scaffolds as biomaterial candidate for bone tissue engineering. 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences. 2016: :623–6.

Timchenko PE, Timchenko E V., Pisareva E V., Vlasov MY, Red’Kin NA, Frolov OO. Spectral analysis of allogeneic hydroxyapatite powders. In: Journal of Physics: Conference Series. Institute of Physics Publishing; 2017. DOI: https://doi.org/10.1088/1742-6596/784/1/012060)

Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012: 2(1). DOI: https://doi.org/10.1186/2228-5326-2-32

Irwansyah FS, Noviyanti AR, Eddy DR, Risdiana R. Green Template-Mediated Synthesis of Biowaste Nano-Hydroxyapatite: A Systematic Literature Review. Vol. 27, Molecules. MDPI; 2022. DOI: https://doi.org/10.3390/molecules27175586

Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers (Basel). 2023: 15(7). DOI: https://doi.org/10.3390/polym15071596

Nagaraj A, Kumar Kalagatur N, Kadirvelu K, Shankar S, Mangamuri UK, Sudhakar P, et al. Biomimetic of hydroxyapatite with Tridax procumbens leaf extract and investigation of antibiofilm potential in Staphylococcus aureus and Escherichia coli. Indian J Biochem Biophys. 2022: 59:755–66.

Nagaraj A, Samiappan S. Presentation of Antibacterial and Therapeutic Anti-inflammatory Potentials to Hydroxyapatite via Biomimetic With Azadirachta indica: An in vitro Anti-inflammatory Assessment in Contradiction of LPS-Induced Stress in RAW 264.7 Cells. Front Microbiol. 2019: 10. DOI: https://doi.org/10.3389/fmicb.2019.01757

Castro F, Ferreira A, Rocha F, Vicente A, António Teixeira J. Characterization of intermediate stages in the precipitation of hydroxyapatite at 37°C. Chem Eng Sci. 2012: 77:150–6. DOI: https://doi.org/10.1016/j.ces.2012.01.058

Muhaimin FI, Cahyaningrum SE, Lawarti RA, Maharani DK. Characterization and Antibacterial Activity Assessment of Hydroxyapatite-Betel Leaf Extract Formulation against Streptococcus mutans In Vitro and In Vivo. Indonesian Journal of Chemistry. 2023: 23(2):358–69. DOI: https://doi.org/ 10.22146/ijc.77853

Benataya K, Lakrat M, Elansari LL, Mejdoubi E. Synthesis of B-type carbonated hydroxyapatite by a new dissolution-precipitation method. In: Materials Today: Proceedings. Elsevier Ltd; 2020. p. S83–8. DOI: https://doi.org/10.1016/j.matpr.2020.06.100

Hanura AB, Trilaksani W, Suptijah P. CHARACTERIZATION OF NANOHYDROXYAPATITE FROM TUNA’S Thunnus sp BONE AS BIOMATERIALS SUBSTANCE. Jurnal Ilmu dan Teknologi Kelautan Tropis. 2018: 9(2):619–29. DOI: https://doi.org/10.29244/jitkt.v9i2.19296

Alif MF, Arief S, Yusuf Y, Yunita Y, Ramadhani J, Triandini S. Synthesis of hydroxyapatite from Faunus ater shell biowaste. Next Materials. 2024: 3:100157. DOI: https://doi.org/10.1016/j.nxmate.2024.100157

Jiangseubchatveera N, Liawruangrath B, Liawruangrath S, Teerawutgulrag A, Santiarworn D. The chemical constituents and the cytotoxicity, antioxidant and antibacterial activities of the essential oil of Graptophyllum pictum (L.) Griff antibacterial activities of the essential oil of Graptophyllum pictum (L.) Griff. Journal of Essential Oil Bearing Plants. 2015: 18(1):11–7. DOI: https://doi.org/10.1016/j.ces.2012.01.058




DOI: https://doi.org/10.24198/jkg.v37i1.59462

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Kedokteran Gigi Universitas Padjadjaran

INDEXING & PARTNERSHIP

     

      

     

 

Statistik Pengunjung

Creative Commons License
Jurnal Kedokteran Gigi Universitas Padjadjaran dilisensikan di bawah Creative Commons Attribution 4.0 International License