Suatu Generalisasi (R,S)-Submodul Prima Gabungan
Abstract
serta suatu (R; S)-modul M. Suatu (R; S)-submodul sejati P di M disebut (R; S)-
submodul prima gabungan jika untuk setiap ideal I di R, ideal J di S, dan (R; S)-
submodul N di M dengan INJ ⊆ P berakibat IMJ ⊆ P atau N ⊆ P . Pada paper
ini akan disajikan pendefinisian salah satu generalisasi dari (R; S)-submodul prima
gabungan, yang selanjutnya disebut (R; S)-submodul prima gabungan lemah kiri.
Selanjutnya, disajikan pula beberapa sifat terkait hubungan antara (R; S)-submodul
prima lemah kiri dengan (R; S)-submodul prima gabungan.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Adkins, W.A., Algebra "An Approach via Module Theory", Springer-Verlag, New York, Inc., USA, 1992.
Azizi, A., Weakly Prime Submodules and Prime Modules, Glasgow Mathematics Journal, No.48, 343-346
(2006).
Azizi, A., On Prime and Weakly Prime Submodules, Vietnam Journal of Mathematics, Vol.36 No.3, 315-
(2008).
Behboodi, M., Koohy, H., Weakly Prime Modules, Vietnam Journal of Mathematics Vol. 32 No. 2, pp. 185
- 195 (2004).
Behboodi, M., On Weakly Prime Radical of Modules and Semi-Compatible Modules, Acta Math. Hungarian, Vol 113 No 3, 243-254 (2006).
Dauns, J., Prime Modules, Journal fur die reine und angewandte Mathematik, No. 298, 156-181 (1978).
Khumprapussorn, T., Pianskool, S., and Hall, M., (R; S)-Modules and Theri Fully and Jointly Prime
Submodules, International Mathematical Forum, Vol. 7 No. 33, 1631-1643 (2012).
Yuwaningsih, D.A. and Wijayanti, I.E., On Jointly Prime Radicals of (R, S)-Modules, Journal of Indonesian Mathematical Society, Vol.21 No.1, 25-34 (2015)
DOI: https://doi.org/10.24198/jmi.v14.n2.18088.99-104
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Jurnal Matematika Integratif
Published By:
Department of Matematics, FMIPA, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM. 21 Jatinangor
Indexed by:
Visitor Number : View My Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.










