Weighted Local Times of a Sub-fractional Brownian Motion as Hida Distributions

Herry Pribawanto Suryawan

Abstract


The sub-fractional Brownian motion is a Gaussian extension of the Brownian motion. It has the properties of self-similarity, continuity of the sample paths, and short-range dependence, among others. The increments of sub-fractional Brownian motion is neither independent nor stationary. In this paper we study the sub-fractional Brownian motion using a white noise analysis approach. We recall the represention of sub-fractional Brownian motion on the white noise probability space and show that Donsker's delta functional of a sub-fractional Brownian motion is a Hida distribution. As a main result, we prove the existence of the weighted local times of a $d$-dimensional sub-fractional Brownian motion as Hida distributions.

Keywords


sub-fractional Brownian motion; local times; white noise analysis

Full Text:

PDF

References


Biagini, F., Hu, Y., Oksendal, B., and Zhang, T., 2008, Stochastic Calculus for Fractional Brownian Motion and Applications, Berlin: Springer-Verlag.

Bojdecki, T., Gorostiza, L. G., and Talarczyk, A., 2004, Sub-fractional Brownian Motion and Its Relation to Occupation Times, Statist. Probab. lett., 69, 405-419.

Bojdecki, T., Gorostiza, L. G., and Talarczyk, A., 2004, Fractional Brownian Density Process and Its Self-intersection Local Time of Order k, J. Theoret. Probab., 69, 717-739.

Bojdecki, T., Gorostiza, L. G., and Talarczyk, A., 2007, Some Extensions of Fractional Brownian Motion and Sub-fractional Brownian Motion Related to Particle Systems, Elect. Comm. in Probab., 12, 161-172.

El-Nouty, Ch., 2012, The Lower Classes of the Sub-fractional Brownian Motion, Stochastic Differential Equations and Processes, 7, 179-196.

Gradshteyn, I. S., and Ryzhik, I. M., 2015, Table of Integrals, Series, and Products, 8th ed., Boston: Academic Press.

Hida, T. et al, 1993, White Noise. An Infinite Dimensional Calculus, Dordrecht: Kluwer Academic Publishers.

Kondratiev, Y. et al, 1996, Generalized Functionals in Gaussian Spaces: The Characterization Theorem Revisited, J. Funct. Anal., 141, 301-318.

Kuo, H-H., 1996, White Noise Distribution Theory, Boca Raton: CRC Press.

Mendy, I., 2010, On the Local Time of Sub-fractional Brownian Motion, Annales Mathematiques Blaise Pascal, 17, 357-374.

Mishura, Y., 2008, Stochastic Calculus for Fractional Brownian Motions and Related Processes, Berlin: Springer-Verlag.

Obata, N., 1994, White Noise Calculus and Fock Space, Heidelberg: Springer Verlag.

Tudor, C., 2007, Some Properties of the Sub-fractional Brownian Motion, Stochastics, 79, 431-448.

Tudor, C., 2008, Inner Product Spaces of Integrands Associated to Subfractional Brownian Motion, Statist. Probab. Lett., 78, 2201-2209.

Tudor, C., 2008, Some Aspects of Stochastic Calculus for the Sub-fractional Brownian Motion, Ann. Univ. Bucuresti, Mathematica}, 2008, 199-230.

Tudor, C., 2013, On the Wiener Integral with Respect to a Sub-fractional Brownian Motion on an Interval, J. Math. Anal. Appl., 351, 456-468.

Wang, Z., and Yan, L., 2013, The S-Transform of Sub-fBm and an Application to a Class of Linear Subfractional BSDEs, Advances in Mathematical Physics, 2013, Article ID 827192, 11 pages.

Yan, L., and Shen, G., 2010, On the Collision Local Time of Sub-fractional Brownian Motions, Statist. Probab. Lett., 80, 296-308.

Yan, L., Shen, G., and He, K., 2011, Ito Formula for a Sub-fractional Brownian Motion, Comm. Stoch. Anal., 5, 135-159.




DOI: https://doi.org/10.24198/jmi.v15.n2.23350.81

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal Matematika Integratif



Published By:

Department of Matematics, FMIPA, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM. 21 Jatinangor


Indexed by:

width=width= width= width= width= width=

 

Visitor Number : free
hit counter View My Stats


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.