Prediction of Life Expectancy in Maluku Province Using Backpropagation Artificial Neural Networks
Abstract
Life Expectancy at Birth (LE) is defined as the average estimated number of years a person can live to since their birth. The purpose of LE is to represent the health rate of a community. Backpropagation is an algorithm in artificial neural networks (ANN) used to predict or forecast data. This study aims to predict Life Expectancy in Moluccas. Based on the results of the analysis obtained an average forecasting success of 99.65% with the smallest error MAPE = 0,0035. Forecasting for the next 5 years shows that the Life Expectancy value tends to increase over the next 5 years from 2019-2023 at 65.7828 (2019) increasing to 66.6632 (2023).
Keywords
Full Text:
PDFReferences
. I. Basheer and M. Hajmeer, “Artificial neural networks: fundamentals, computing, design, and application,” J. Microbiol. Methods, vol. 43, no. 1, pp. 3–31, Dec. 2000.
I. Aizenberg, L. Sheremetov, L. Villa-Vargas, and J. Martinez-Muñoz, “Multilayer Neural Network with Multi-Valued Neurons in time series forecasting of oil production,” Neurocomputing, 2016.
K. I. Hoi, K. V. Yuen, and K. M. Mok, “Prediction of daily averaged PM10 concentrations by statistical time-varying model,” Atmos. Environ., 2009.
B. Sharma and P. K. Venugopalan, “Comparison of Neural Network Training Functions for Hematoma Classification in Brain CT Images,” IOSR J. Comput. Eng., 2014.
H. H. Örkcü and H. Bal, “Comparing performances of backpropagation and genetic algorithms in the data classification,” Expert Syst. Appl., 2011.
J. Kamruzzaman and R. A. Sarker, “ANN-Based Forecasting of Foreign Currency Exchange Rates,” Neural Inf. Process. Rev., 2004.
A. Ghaffari, H. Abdollahi, M. R. Khoshayand, I. S. Bozchalooi, A. Dadgar, and M. Rafiee-Tehrani, “Performance comparison of neural network training algorithms in modeling of bimodal drug delivery,” Int. J. Pharm., vol. 327, no. 1–2, pp. 126–138, Dec. 2006.
jolianis koto, “Pengaruh Angka Melek Huruf Dan Angka Harapan Hidup Terhadap Jumlah Penduduk Miskin Di Propinsi Sumatera Barat,” Economica, 2015.
A. Sugiantari and I. Budiantara, “Analisis Faktor-faktor yang Mempengaruhi Angka Harapan Hidup di Jawa Timur Menggunakan Regresi Semiparametrik Spline,” J. Sains dan Seni ITS, 2013.
Khomarun, M. A. Nugroho, and E. S. Wahyuni, “Pengaruh Aktivitas Fisik Jalan Pagi Terhadap Penurunan Tekanan Darah Pada Lansia Dengan Hipertensi Stadium I Di Posyandu Lansia Desa Makamhaji Khomarun, Maharso Adhi Nugroho, Endang Sri Wahyuni,” J. Terpadu Ilmu Kesehat., 2014.
Y. A. Lesnussa, C. G. Mustamu, F. Kondo Lembang, and M. W. Talakua, “Application Of Backpropagation Neural Networks In Predicting Rainfall Data In Ambon City,” Int. J. Artif. Intell. Res., 2018.
D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Comput. Eng. Sci. Syst. J., 2019.
DOI: https://doi.org/10.24198/jmi.v16.n2.26606.75-82
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Jurnal Matematika Integratif

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published By:
Department of Matematics, FMIPA, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM. 21 Jatinangor
Indexed by:
Visitor Number : View My Stats
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.