Konstruksi Metode Transformasi Diferensial Multi-Step (Multi-Step Differential Transform Method) untuk Model SEIRS Autonomous dan Nonautonomous
Abstract
Pemodelan matematika telah banyak digunakan untuk memahami permasalahan nyata. Model matematika dapat diselesaikan secara analitik. Namun, apabila model matematika tersebut semakin kompleks, maka solusi analitik tidak mudah diperoleh dan pendekatan numerik digunakan. Dalam artikel ini, pendekatan numerik dengan Metode Transformasi Diferensial (MTD) multi-step yang menghasilkan solusi deret konvergen digunakan untuk mencari solusi dari model matematika penyebaran penyakit SEIRS yang autonomous dan non-autonomous. Metode ini dikenal juga dengan metode semi analitik karena kita dapat menuliskan solusi analitik dari model yang dicarikan solusinya. Dalam artikel akan dikonstruksi metode tranformasi diferensial untuk model SEIRS autonomous dan nonautonomous dan menganalisis akurasi dengan cara membandingkan dengan metode Runge-Kutta. Metode transformasi diferensial multi-step dapat memberikan aproksimasi solusi yang baik dari model matematika SEIRS autonomous dan non-autonomous. Namun, kinerja dari metode ini lebih baik pada model autonomous.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
N. Anggriani, H. Tasman, M.Z. Ndii, A.K. Supriatna, E. Soewono, and E Siregar. The eect of reinfection
with the same serotype on dengue transmission dynamics. Applied Mathematics and Computation, 349:62
{ 80, 2019.
A. J. Arenas, G. Gonzales-Parra, and B. M. Chen-Charpentier. Dynamical analysis of the transmission
of seasonal disease using the dierential transformation method. Mathematical and Computer Modelling,
:765{776, 2009.
Metode Transformasi Diferensial 7
I.H. Abdel-Halim Hassan. Application to dierential transformation method for solving systems of dier-
ential equations. Applied Mathematical Modelling, 32(12):2552 { 2559, 2008.
M. Hatami, D. Domairry, and M. Sheikholeslami. Dierential Transformation Method for Mechanical
Engineering Problems. Springer, United Kingdom, 2017.
Alexandra B. Hogan, Kathryn Glass, Hannah C. Moore, and Robert S. Anderssen. Age structures in
mathematical models for infectious diseases, with a case study of respiratory syncytial virus. In Robert S.
Anderssen, Philip Broadbridge, Yasuhide Fukumoto, Kenji Kajiwara, Tsuyoshi Takagi, Evgeny Verbitskiy,
and Masato Wakayama, editors, Applications + Practical Conceptualization + Mathematics = fruitful
Innovation, pages 105{116, Tokyo, 2016. Springer Japan.
R. U. Hurint, M. Z. Ndii, and M. Lobo. Analisis sensitivitas dari model epidemi SEIR. Natural Science:
Journal of Science and Technology, 6(1):22{28, 2017.
M. Z. Ndii, N. Anggriani, and A. K. Supriatna. Application of dierential transformation method for solving
dengue transmission mathematical model. Symposium on Biomathematics. AIP Conference Proceeding,
M. Z. Ndii, N. Anggriani, and A. K. Supriatna. Comparison of the dierential transformation method and
non standard nite dierence scheme for solving plant disease mathematical model. Communication in
Biomathematical Sciences, 1(2), 2018.
M. Z. Ndii, E. Carnia, and A. K. Supriatna. Mathematical models for the spread of rumors: A review. In
Ford Lumban Gaol, editor, Issues and Trends in Interdisciplinary Behavior and Social Science: Proceedings
of the 6th International Congress on Interdisciplinary Behavior and Social Sciences (ICIBSoS 2017), July
-23, 2017, Bali, Indonesia. CRC Press, USA, 2018.
Mostafa Nourifar, Ahmad Aftabi Sani, and Ali Keyhani. Ecient multi-step dierential transform method:
Theory and its application to nonlinear oscillators. Commun Nonlinear Sci Numer Simulat, 53:154{183,
Z. M. Odibat, C. Bertelle, M.A. Aziz-Alaoui, and G. H.E. Duchamp. A multi-step dierential transform
method and application to non-chaotic or chaotic systems. Computers and Mathematics with Applications,
(4):1462{1472, 2010.
A. Suryanto, W. M. Kusumawinahyu, I. Darti, and I. Yanti. Dynamically consistent discrete epidemic
model with modied saturated incidence rate. Computational and Applied Mathematics, 32:373{383, 2013.
J. K. Zhou. Dierential Transformation and Its Applications for Electrical Circuits. Huazhong University
Press, Wuhan, China (in Chinese), 1986.
DOI: https://doi.org/10.24198/jmi.v16.n1.27630.52-60
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Jurnal Matematika Integratif
Published By:
Department of Matematics, FMIPA, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM. 21 Jatinangor
Indexed by:
Visitor Number : View My Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.










