Homomorfisa Modul Deret Pangkat Tergeneralisasi Miring

Ahmad Faisol, Fitriani Fitriani

Abstract


Diberikan sebarang ring komutatif $R$ dengan elemen satuan, monoid terurut tegas $(S,\leq)$, homomorfisma monoid $\omega:S\rightarrow End(R)$, submonoid $S_1,S_2\subseteq S$ yang masing-masing dilengkapi urutan $\leq_1, \leq_2$ yang \textit{coarser} terhadap urutan $\leq$ pada $S$, dan modul $M_1,M_2$ atas $R$. Pada penelitian ini, dikonstruksi modul deret pangkat tergeneralisasi miring $M_1[[S_1,\leq_1,\omega]]$ dan $M_2[[S_2,\leq_2,\omega]]$ atas ring deret pangkat tergeneralisasi miring $R[[S,\leq,\omega]]$. Selain itu, dibuktikan pemetaan $\tau$ dari $M_1[[S_1,\leq_1,\omega]]$ ke $M_2[[S_2,\leq_2,\omega]]$ dengan $\tau(\alpha_1)=\gamma\circ\alpha_1\circ\delta^{-1}$ merupakan $R[[S,\leq,\omega]]$-homomorfisma modul dengan mensyaratkan  $f(\delta^{-1}(u))=f(u)$ dan $\omega_{\delta^{-1}(v)}=\omega_{v}$ untuk setiap $u,v\in S_2$ dan $f\in R[[S,\leq,\omega]]$.

Keywords


monoid terurut tegas, homomorfisma ring, ring deret pangkat tergeneralisasi miring, homomorfisma modul, modul deret pangkat tergeneralisasi miring.

Full Text:

PDF

References


bibitem{dummit} Dummit, D.S., 2004, emph{Abstract Algebra}, John Wiley and Sons.

bibitem{rib} Ribenboim, P., 1990, Generalized power series rings, in textit{Lattice, Semigroups and Universal Algebra}, Plenum Press, New York, pp 271-277.

bibitem{gilmer} Gilmer, R., 1984, emph{Commutative Semigroups Rings}, University of Chicago Press, Chicago.

bibitem{hungerford} Hungerford, T.W., 1974, emph{Algebra}, Springer-Verlag, New York.

bibitem{adk} Adkins, W. A., Weintraub, S. H., 1992, emph{Algebra: An Approach via Module Theory}, Springer-Verlag, New York.

bibitem{elliot} Elliott, G.A., Ribenboim, P., 1990, Fields of Generalized Power Series, textit{Arch. Math.}, textbf{54}:365-371.

bibitem{rib91} Ribenboim, P., 1991, Rings of Generalized Power Series: Nilpotent Elements, textit{Abh. Math. Sem. Univ. Hambg.}, textbf{61}:15-33.

bibitem{ribenboim92} Ribenboim, P., 1992, Noetherian Rings of Generalized Power Series, textit{Journal of Pure and Applied Algebra}, textbf{79}:293-312.

bibitem{ribenboim94} Ribenboim, P., 1994, Rings of Generalized Power Series II: Units and Zero-Divisors, textit{Journal of Algebra}, textbf{168}:71-89.

bibitem{ribenboim95} Ribenboim, P., 1995, Special Properties of Generalized Power Series, textit{Journal of Algebra}, textbf{173}:566-586.

bibitem{ribenboim97} Ribenboim, P., 1997, Semisimple Rings and Von Neumann Regular Rings of Generalized Power Series, textit{Journal of Algebra}, textbf{198}:327-338.

bibitem{var01a} Varadarajan, K., 2001, Noetherian generalized power series rings and modules, textit{Communications In Algebra}, textbf{29(1)}:245-251.

bibitem{fai19c} Faisol, A., Surodjo, B., Wahyuni, S., 2019, The Relation between Almost Noetherian Module, Almost Finitely Generated Module and $T$-Noetherian Module, emph {The 2nd International Conference on Mathematics: Education, Theory, and Application (ICMETA 2018), J. Phys.: Conf. Ser. 1306.,} 012001.

bibitem{fai19a} Faisol, A., Surodjo, B., Wahyuni, S., 2019, The Sufficient Conditions for $R[X]$-module $M[X]$ to be $S[X]$-Noetherian, textit{European Journal of Mathematical Sciences}, textbf{5(1)}:1-13.

bibitem{fai19b} Faisol, A., Surodjo, B., Wahyuni, S., 2019, $T[[S]]$-Noetherian Property on Generalized Power Series Modules, textit{JP Journal of Algebra, Number Theory and Applications}, textbf{43(1)}:1-12.

bibitem{fai20} Pardede, W.A.P., Faisol, A., Fitriani, 2020, The $X[[S]]$-Sub-Exact Sequence of Generalized Power Series Rings, textit{Al-Jabar J. Pendidik. Mat.}, textbf{11(2)}:299-306.

bibitem{fai21} Faisol, A., Fitriani, Sifriyani, 2021, Determining the Noetherian Property of Generalized Power Series Modules by Using $X$-Sub-Exact Sequence, emph{The 3rd International Conference on Applied Sciences Mathematics and Informatics (ICASMI 2020), J. Phys.: Conf. Ser. 1751.,} 012028.

bibitem{maz08} Mazurek, R., Ziembowski, M., 2008, On Von Neumann Regular Rings of Skew Generalized Power Series, textit{Commun. Algebr.}, textbf{36(5)}:1855-1868.

bibitem{maz09} Mazurek, R., Ziembowski, M., 2009, The ascending chain condition for principal left or right ideals of skew generalized power series rings, textit{Journal of Algebra}, textbf{322(4)}:983-994.

bibitem{maz10} Mazurek, R., Ziembowski, M., 2010, Weak dimension and right distributivity of skew generalized power series rings, textit{J. Math. Soc. Japan}, textbf{62(4)}:1093-1112.

bibitem{maz14} Mazurek, R., 2014, Rota-Baxter Operators on Skew Generalized Power Series Rings, textit{J. Algebr. its Appl.}, textbf{13(7)}:1-10.

bibitem{maz15} Mazurek, R., 2015, Left Principally Quasi-Baer and Left APP-rings of Skew Generalized Power Series, textit{J. Algebr. its Appl.}, textbf{14(3)}:1-36.

bibitem{maz17} Mazurek, R., Paykan, K., 2017, Simplicity of skew generalized power series rings, textit{New York J. Math.}, textbf{23}:1273-1293.

bibitem{fai09} Faisol, A., 2009, Homomorfisam Ring Deret Pangkat Teritlak Miring, textit{J. Sains MIPA}, textbf{15(2)}:119-124.

bibitem{fai10} Faisol, A., 2010, Ideal Ring Deret Pangkat Teritlak Miring, in textit{Prosiding Seminar Nasional Sains MIPA dan Aplikasinya 2010 (SNSMAP 10)}, pp 202-207.

bibitem{fai13} Faisol, A., 2013, Pembentukan Ring Faktor Pada Ring Deret Pangkat Teritlak Miring, in textit{Prosiding Semirata FMIPA Universitas Lampung}, pp 1-5.

bibitem{fai14} Faisol, A., 2014, Endomorfisma Rigid dan Compatible pada Ring Deret Pangkat Tergeneralisasi Miring, textit{J. Matematika}, textbf{17(2)}:45-49.

bibitem{fai16} Faisol, A., Surodjo, B., dan Wahyuni, S., 2016, Modul Deret Pangkat Tergeneralisasi Skew $T$-Noether, in textit{Prosiding Seminar Nasional Aljabar, Penerapan, dan Pembelajarannya}, pp 95-100.

bibitem{fai18} Faisol, A., Surodjo, B., Wahyuni, S., 2018, The Impact of The Monoid Homomorphism on The Structure of Skew Generalized Power Series Rings, textit{Far East Journal of Mathematical Sciences}, textbf{103(7)}:1215-12275.

bibitem{fai19} Faisol, A., Fitriani, 2019, The Sufficient Conditions for Skew Generalized Power Series Module $M[[S,omega]]$ to be $T[[S,omega]]$-Noetherian $R[[S,omega]]$-module, textit{Al-Jabar J. Pendidik. Mat.}, textbf{10(2)}:285-292.




DOI: https://doi.org/10.24198/jmi.v17.n2.34646.119-126

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Jurnal Matematika Integratif

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Published By:

Department of Matematics, FMIPA, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM. 21 Jatinangor


Indexed by:

width=width= width= width= width= width=

 

Visitor Number : free
hit counter View My Stats


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.