Model Matematika Penyebaran Penyakit Pneumonia dengan Intervensi Vaksinasi dan Pengobatan

Nicola Chandra Darmawan, Hengki Tasman

Abstract


Pneumonia merupakan penyakit infeksi saluran pernapasan yang menyerang paru-paru. Salah satu upaya yang dapat dilakukan untuk mengendalikan penyebaran penyakit ini adalah dengan melakukan pengobatan dan vaksinasi. Pada artikel ini dikonstruksi model matematika penyebaran penyakit pneumonia dengan intervensi pengobatan dan vaksinasi. Model matematika tersebut dikaji secara analitik dan dilakukan simulasi numerik. Kajian analitik meliputi keberadaan titik keseimbangan dan kestabilan lokalnya, serta bilangan reproduksi dasar R0. Dengan simulasi numerik didapat informasi bahwa intervensi vaksinasi dan pengobatan mampu mengendalikan penyebaran penyakit pneumonia.

Keywords


model matematika; titik keseimbangan

References


bibitem{CDC} Centers for Disease Control and Prevention. (2020). textit{Pneumonia Can Be Prevented – Vaccines Can Help}.

bibitem{Alodokter} Centers for Disease Control and Prevention. (2019). textit{Vaccines and Preventable Diseases. Pneumococcal Vaccination: What Everyone Should Know}.

bibitem{Dallas} Dallas, M.E. Everyday Health. (2020).textit{ Lung & Respiratrory. What Is Pneumonia? Symptoms, Causes, Diagnosis, Treatment, and Prevention}.

bibitem{Diekmann} Diekmann, O., Heesterbeek, J.A.P., & Roberts, M.G. (2009). The construction of Next-generation Matrices for Compartmental Epidemic Models.

textit{J. R. Soc. Interface}, 7, 873-885.

bibitem{Gumel} Gumel. A.B (2012). Causes of backward bifurcations in some epidemiological models. textit{J. Math. Anal}. Appl. 395 (2012) 355–365.

bibitem{Kozito} Kozito.M., & Julius.T. (2018).

A Mathematical Model of Treatment and Vaccination Interventions of Pneumococcal Pneumonia Infection Dynamics. textit{Journal of Applied Mathematics}.

bibitem{Martcheva}Martcheva, Maia. (2015). textit{An Introduction to Mathematical Epidemiology}. New York: Springer.

bibitem{Moghadas} Moghadas. S.M. (2006). Gaining insights into human viral diseases through mathematics. textit{European Journal of Epidemiology}, 21, 5, 337–342.

bibitem{Otoo} Otoo, D., Opoku, P., Charles, S., & Kingsley, A. P. (2020). Deterministic epidemic model for ($SVC_{SY}C_{ASY}IR$) pneumonia dynamics, with vaccination and temporal immunity. Itextit{nfectious Disease Modelling}, 5, 42–60.

bibitem{Rusniwati}Rusniwati S.I, dkk (2021). Model Matematika SEIPR Penyebaran Penyakit Pneumonia pada Balita dengan Faktor Imunisasi dan Pengobatan. textit{JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI.} Vol. 17, No. 2, 202-218.

bibitem{Stoppler} Stoppler, M.C. MedicineNet. (2019). textit{Lungs Health Center. Pneumonia (Symptoms, Causes, Types, Treatment, and Recovery)}.

bibitem{WHO}World Health Organization. (2019). Pneumonia.

bibitem{Zephaniah} Zephaniah, O. C., Nwaugonma, U.R, Chioma, I.S , & Adrew, O. (2020). A Mathematical Model and Analysis of an $SVEIR$ Model for Streptococcus Pneumonia with Saturated Incidence Force of Infection. textit{Mathematical Modelling and Applications}, Vol. 5, No. 1, 2020, pp. 16-38.




DOI: https://doi.org/10.24198/jmi.v18.n1.36064.63-72

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Jurnal Matematika Integratif

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Published By:

Department of Matematics, FMIPA, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM. 21 Jatinangor


Indexed by:

width=width= width= width= width= width=

 

Visitor Number : free
hit counter View My Stats


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.