The Properties of Rough Submodule over Rough Ring

Rara Gusti Rahmawati, Fitriani Fitriani, Ahmad Faisol

Abstract


A pair of non-empty set $U$ and equivalence relation $R$ on $U$, denoted as $(U,R)$, is called approximation space. Furthermore, equivalence classes form the construction of lower approximation and upper approximation. Let $X\subseteq U$, the lower approximation of $X$ denoted by $\underline{X}$ and the upper approximation of $X$ denoted by $\overline{X}$. A pair $Apr(X)=(\underline{X},\overline{X})$ is a rough set if $\underline{X}\neq \overline{X}$. $Apr(X)$ is rough module if $Apr(X)$ satisfies some conditions. In this research, we investigate some characteristics of the rough module and rough submodule over rough ring. Furthermore, we construct examples of the rough module and the rough submodule on approximation space $(U,R)$.


Keywords


Approximation space, rough group, rough ring, rough module, rough submodule.

Full Text:

PDF

References


Pawlak, Z., Rough sets, Int. J. Comput. Inf. Sci., vol.11, no.5, pp.341–356, 1982, doi:10.1007/BF01001956.

Wang, N. and Zhao, E., A new method for feature selection based on weighted K-nearest neighborhood rough set, Expert Systems With Applications, vol.238, 2024.

Theerens, A., and Cornelis, C., Fuzzy rough sets based on fuzzy quantification, Fuzzy Sets and Systems, vol.473, 2023.

Janicki, R., On some generalization of rough sets, International Journal of Approximate Reasoning, vol.163, 2023.

Fatima, A. and Javaid, I., Rough set theory applied to finite dimensional vector spaces, Information Sciences, vol.659, 2024.

Hu, M., Guo, Y., Chen, D., Tsang, E. C. C., and Zhang, Q., Attribute reduction based on neighborhood constrained fuzzy rough sets, Knowledge-Based Systems, vol.274, 2023.

Fitriani and Faisol, A., Grup (1st ed.), Matematika, Yogyakarta, 2022.

Roman, S., Fundamentals of Group Theory: An Advanced Approach, Springer Science and Business Media, 2011.

Khattar, D. andAgrawal, N., Ring Theory, Springer Nature, 2023.

Wahyuni, S., Wijayanti, I. E., Yuwaningsih, D. A., and Hartanto, A. D., Teori Ring dan Modul (2nd ed.), Gadjah Mada University Press, Yogyakarta, 2020.

Miao, D., Han, S., Li, D., and Sun, L., Rough Group , Rough Subgroup and Their Properties, Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, vol.1, pp.104–105, 2005.

Davvaz, B. and Mahdavipour, M., Roughness in modules, Information Sciences, vol.176, pp.3658–3674, 2006.

Zhang, Q. F., Fu, A. M., and Zhao, S. X., Rough modules and their some properties, Proceed- ings of the 2006 International Conference on Machine Learning and Cybernetics, pp.2290–2293, 2006, doi:10.1109/ICMLC.2006.258675.

Zhang, Q., Xie, Q., and Wang, G., A survey on rough set theory and its applications, CAAI Transactions on Intelligence Technology, vol.1, no.4, pp.323–333, 2016, doi:10.1016/j.trit.2016.11.001

Davvaz, B. and Malekzadeh, A., Roughness in modules by using the notion of reference points, Iranian Journal of Fuzzy Systems, vol.10, no.6, pp.109–124, 2013.

Neelima, C. A. and Isaac, P., Rough Semi Prime Ideals and Rough Bi-Ideals in Rings, Int Jr. of Mathe- matical Sciences and Applications, vol.4, no.1, pp.29–36, 2014.

Sa, M., Neelima, C. A., and Isaac, P., Anti-homomorphism on rough prime fuzzy ideals and rough primary fuzzy ideals, Annals of Fuzzy Mathematics and Informatics, vol.8, no.4, pp.549–559, 2014.

Isaac, P. and Paul, U., Rough G-modules and their properties, Advances in Fuzzy Mathematics. vol.12, no.1, pp.93–100, 2017.

Nugraha, A. A., Fitriani, F., Ansori, M., and Faisol, A., The Implementation of Rough Set on a Group Structure, Jurnal Matematika MANTIK, vol.8, no.1, pp.45–52, 2022.

Jesmalar, L., Homomorphism and Isomorphism of Rough Group, International Journal of Advance Re- search, Ideas and Innovations in Technology, vol.3, no.x, pp.1382–1387, 2017.

Setyaningsih, N., Fitriani, and Faisol, A., Sub-exact sequence of rough groups, Al-Jabar: Jurnal Pendidikan Matematika, vol.12, no.2, pp.267–272, 2021, doi:10.24042/ajpm.v12i2.8917.

Agusfrianto, F.A., Fitriani, and Mahatma, Y., Rough Rings, Rough Subrings, and Rough Ideals, Journal of Fundamental Mathematics and Applications, vol.5, no.2, pp.1–8, 2022.

Hafifullah, D., Fitriani, and Faisol, A., The Properties of Rough V-Coexact Sequence in Rough Group, BAREKENG: Journal of Mathematics and Its Application, vol.16, no.3, pp.1069–1078, 2022.

Ayuni, F., Fitriani, and Faisol, A., Rough U-Exact Sequence of Rough Groups, Al-Jabar: Jurnal Pen- didikan Matematika, vol.13, no.2, pp.363–371, 2022.

Dwiyanti, G. A., Fitriani, and Faisol, A., The Implementation of a Rough Set of Projective Module, BAREKENG: Journal of Mathematics and Its Application, vol.17, no.2, pp.737–746, 2023.

Davvaz, B., Roughness in rings, Information Sciences, vol. 164, no.1-4, pp.147–163, 2004, doi:10.1016/j.ins.2003.10.001.




DOI: https://doi.org/10.24198/jmi.v20.n2.55570.185-196

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Matematika Integratif

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Published By:

Department of Matematics, FMIPA, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM. 21 Jatinangor


Indexed by:

width=width= width= width= width= width=

 

Visitor Number : free
hit counter View My Stats


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.