ABUNDANCE OF Succinivibrionaceae BACTERIA IN THE FECES OF CALVES FED TANNINS, AMINO ACIDS, AND THEIR COMBINATION
Abstract
Keywords
Full Text:
PDFReferences
Amin, N., & Seifert, J. (2021). Dynamic progression of the calf’s microbiome and its influence on host health. Computational and Structural Biotechnology Journal 19, 989–1001. https://doi.org/10.1016/J.CSBJ.2021.01.035
Bach, A., Calsamiglia, S., & Stern, M. D. (2005). Nitrogen metabolism in the rumen. Journal of Dairy Science 88 (Suppl 1), E9–E21. https://doi.org/10.3168/jds.S0022-0302(05)73133-7
de Coster, W., D'Hert, S., Schultz, D.T., Cruts, M., van Broeckhoven, C. (2018). NanoPack: visualizing and processing long-read sequencing data. Bioinformatics, 34(15), 2666-2669. https://doi.org/10.1093/bioinformatics/bty149
Esmaeili, N., Zohuriaan-Mehr, M, J., Salimi, A., Vafayan, M., & Meyer, W. (2018). Tannic acid derived non-isocyanate polyurethane networks: synthesis, curing kinetics, antioxidizing activity and cell viability. Thermochimica Acta, 664(1), 64–72. doi:10.1016/j.tca.2018.04.013.
Goel, G., Makkar, H. P. S., & Becker, K. (2008). Effects of Sesbania sesban and Carduus pycnocephalus leaves and fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage- and concentrate-based feeds to methane. Animal Feed Science Technology, 147(1-3), 72-89. https://doi.org/10.1016/j.anifeedsci.2007.09.010
Griswold, K. E., Apgar, G. A., Bouton, J., & Firkins, J. L. (2003). Effects of urea infusion and ruminal degradable protein concentration on microbial growth, digestibility, and fermentation in continuous culture. Journal of animal science, 81(1), 329–336. https://doi.org/10.2527/2003.811329x
Hailemariam , S., Zhao, S., & Wang, J. (2020) Complete Genome Sequencing and Transcriptome Analysis of Nitrogen Metabolism of Succinivibrio dextrinosolvens Strain Z6 Isolated From Dairy Cow Rumen. Frontier Microbiology, 11, 1826. https://doi.org/10.3389/fmicb.2020.01826
Hassan, F. U., Arshad, M. A., Ebeid, H. M., Rehman, M. S., Khan, M. S., Shahid, S., & Yang, C. (2020). Phytogenic additives can modulate rumen microbiome to mediate fermentation kinetics and methanogenesis through exploiting diet-microbe interaction. Frontiers in Veterinary Science, 7, 575801. https://doi.org/10.3389/fvets.2020.575801
Hristov, A. N., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., Firkins, J., Rotz, A., Dell, C., Adesogan, A., Yang, W., Tricarico, J., Kebreab, E., Waghorn, G., Dijkstra, J., & Oosting, S. (2013). Mitigation of greenhouse gas emissions in livestock production – A review of technical options for non-CO2 emissions. In Gerber, P. J., Benjamin Henderson, B., & Makkar, H. P. S. (Eds). FAO Animal Production and Health (pp. 177). Rome, Italy: FAO
Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of animal science, 73(8), 2483–2492. https://doi.org/10.2527/1995.7382483x
Kamke, J., Kittelmann, S., Soni, P., Li, Y., Tavendale, M., Ganesh, S., Janssen, P.H., Shi, W.B., Froula, J., Rubin, E.M., & Attwood, G. T. (2016). Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Microbiome 4, 56. https://doi.org/10.1186/s40168-016-0201-2.
Kim, D., Song, L., Breitwieser, F.P., Salzberg, S.L. (2016). Centrifuge: Rapid and sensitive classification of metagenomic sequences. Genome Research, 26(12), 1721-1729. https://doi.org/10.1101/gr.210641.116
Lee, H., Kim, M., Masaki, T., Ikuta, K., Iwamoto, E., Oikawa, K., Uemoto, Y., Haga, S., Terada, F., & Roh, S. (2024). Exploring the link between ruminal methane production and physiological resilience in Japanese Black cattle during fattening. Research Square, 3-23. https://doi.org/10.21203/rs.3.rs5235475/v1
Liepa, L., Zolnere, E., Duritis, I., Krasnova, I., & Segliņa, D. (2018). Effects of Hippophae rhamnoides L. leaf and Marc extract with reduced tannin concentration on the health and growth parameters of newborn calves. European Journal of Medicinal Plants, 22, 1–11. doi:10.9734/EJMP/2018/38537
McCabe, M.S., Cormican, P., Keogh, K., O’Connor, A., O’Hara, E., Palladino, R.A., Kenny, D.A., & Waters, S.M. (2015). Illumina MiSeq Phylogenetic Amplicon Sequencing Shows a Large Reduction of an Uncharacterised Succinivibrionaceae and an Increase of the Methanobrevibacter gottschalkii Clade in Feed Restricted Cattle. PLoS ONE, 10(7), e0133234. https://doi.org/10.1371/journal.pone.0133234
NRC (National Research Council). (2001). Nutrient Requirements of Dairy Cattle, seventh ed. pp. 215-219. Washington DC, USA: National Academy Press.
Nygaard, A.B., Tunsjø, H.S., Meisal, R. and Charnock, C. (2020). A preliminary study on the potential of Nanopore MinION and Illumina MiSeq 16S rRNA gene sequencing to characterize building-dust microbiomes. Science Reports, 10, 1-10. https://doi.org/10.1038/s41598-020-59771-0
Patra, A. K., & Saxena, J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. Journal of Science Food and Agriculture, 91(1): 24–37. https://doi.org/10.1002/jsfa.4152
Patra, A. K., Min, B. R., & Saxena, J. (2012). Dietary tannins on microbial ecology of the gastrointestinal tract in ruminants. In Patra, A. K. (Eds). Dietary Phytochemicals and Microbes, (pp.237-262). Heidelberg, Germany: Springer, 237-262
Pope, P. B., Smith, W., Denman, S. E., Tringe, S. G., Barry, K., Hugenholtz, P., McSweeney, C. S., McHardy, A. C., & Morrison, M. (2011). Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science (New York, N.Y.), 333(6042), 646–648. https://doi.org/10.1126/science.1205760
Schwab, C. G., & Broderick, G. A. (2017). A 100-Year Review: Protein and amino acid nutrition in dairy cows. Journal of Dairy Science, 100(12), 10094–10112. https://doi.org/10.3168/jds.2017-13320
Wallace, R. J., Rooke, J. A., McKain, N., Duthie, C. A., Hyslop, J. J., Ross, D. W., Waterhouse, A., Watson, M., & Roehe, R. (2015). The rumen microbial metagenome associated with high methane production in cattle. BMC genomics, 16, 839. https://doi.org/10.1186/s12864-015-2032-0
Wick, R. R., Judd, L. M., Holt, K. E. (2019). Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biology, 20, 129. https://doi.org/10.1186/s13059-019-1727-y
DOI: https://doi.org/10.24198/jit.v25i3.65207
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
JURNAL ILMU TERNAK INDEXED BY:








.png)

