Sitotoksisitas komposit serat selulosa sabut kelapa sebagai kandidat novelty basis pada material kedokteran gigi: studi eksperimental

Twi agnita cevanti, Diana Soesilo, Fani Pangabdian, Yongki Hadinata Wijaya, Sinta Puspita, Ghita Hadi Hollanda

Abstract


ABSTRAK

Pendahuluan: Teknologi Fiber-reinforced composite (FRC) sedang dikembangkan sebagai bahan inovatif dalam kedokteran gigi. Menipisnya sumber daya fosil merupakan masalah kritis untuk resin komposit serat saat ini. Sabut kelapa Cocos nucifera L.(coir) memiliki potensi tinggi untuk menggantikan bahan penguat serat sintetis sebagai bahan baru yang akan dikembangkan. Tujuan penelitian mengetahui toksisitas komposit serat selulosa coir sebagai material basis. Metode: Jenis penelitian eksperimental post-test only control group. Selulosa dari coir disintesis menggunakan organosolvent, di bleaching dengan peroxide dalam larutan alkali, serta di nukleasi dengan etanol absolut. Dilakukan uji viabilitas sel fibroblas GT1 untuk serat selulosa kemudian pembuatan komposit selulosa coir dengan fraksi berat 70% filler serat selulosa, dan 30% matriks BisGMA, TEGDMA dan DGEBA. Selanjutnya komposit selulosa coir dilakukan uji toksisitas dari hasil rendaman komposit pada saliva buatan selama 7,14, dan 21 hari menggunakan sel fibroblas BHK-21. Hasil: Hasil uji Post Hoc LSD memberikan kesimpulan bahwa kelompok P-21 didapatkan perbedaan yang signifikan antara kelompok perlakuan K.Sel, P-7, P-14 dengan nilai p<0,05. Dosis paling aman serat selulosa coir sebesar 12,5mg/ml; hasil uji Kruskal-wallis dari lama perendaman komposit terdapat perbedaan yang bermakna antar kelompok dengan nilai signifikansi p<0,05 (p=0,001). Simpulan: Serat selulosa coir tidak toksik sehingga dapat menjadi filler komposit sebagai salah satu prasyarat untuk menjadi kandidat novelty basis pada material komposit kedokteran gigi.

KATA KUNCI: coir, komposit, toksistas, basis kedokteran gigi

Cytotoxicity of cellulose fiber from coconut coir as a novelty base candidate on dental materials: experimental study

ABSTRACT

Introduction: Fiber-reinforced composite (FRC) technology is being developed as an innovative material in dentistry. The depletion of fossil resources is a critical issue for current fiber composite resins. Cocos nucifera L. coconut fiber (coir) has high potential to replace synthetic fiber reinforcement as a new material to be developed. The aim of the study was to determine the toxicity of coir cellulose fiber composites as a base material. Methods: This was a post-test only control group experimental study. Cellulose from coir was synthesized using organosolvent, bleached with peroxide in alkaline solution, and nucleated with absolute ethanol. GT1 fibroblast cell viability test was conducted for cellulose fibers and then coir cellulose composites were made with a weight fraction of 70% cellulose fiber filler, and 30% BisGMA, TEGDMA and DGEBA matrix. Furthermore, cellulose coir composites were tested for toxicity from the results of composite immersion in artificial saliva for 7, 14, and 21 days using BHK-21 fibroblast cells. Results: The results of the Post Hoc LSD test concluded that the P-21 group had a significant difference between the K.Sel, P-7, P-14 treatment groups with a value of p<0.05.The safest dose of coir cellulose fiber is 12.5mg/ml; the results of the Kruskal-wallis test of the composite soaking time have significant differences between groups with a significance value of p<0.05 (p=0.001). Conclusion: Coir cellulose fiber is non-toxic so it can be a composite filler as one of the prerequisites to be a novelty base candidate in dental composite materials.

KEY WORDS: coir, composite, toxicity, dental base


Keywords


coir, komposit, toksistas, basis kedokteran gigi, coir, composite, toxicity, dental base

Full Text:

PDF

References


DAFTAR PUSTAKA

Malik, NAB, Lin SL, Rahman NA, Jamaluddin M. Effect of liners on microleakage in class II composite restoration. Sains Malaysiana. 2013; 42(1): 45–51.

van Dijken JW, Pallesen U. Clinical performance of a hybrid resin composite with and without an intermediate layer of flowable resin composite: a 7-year evaluation. Dent Mater. 2011; 27(2): 150-6. DOI: 10.1016/j.dental.2010.09.010

Tjandrawinata R, Wibowo L. Gambaran radiografis restorasi kelas II resin komposit packable, flowable dan pasta regular. J Mat Ked Gigi; 2016; 2(5):62-70. DOI: 10.32793/jmkg.v5i2.254

Lotfi N, Esmaeili B, Ahmadizenouz G, Bijani A, Khadem H. Gingival microleakage in class II composite restorations using different flowable composites as liner: an in vitro evaluation. Caspian J Dent Res. 2015; 4: 10-6.

Jose M, Cyriac MB, Pai V, Varghese I, Shantaram M. Antimicrobial properties of Cocos nucifera (coconut) husk: An extrapolation to oral health. J Nat Sci Biol Med. 2014; 5(2): 359-64. DOI: 10.4103/0976-9668.136184

Arrohman S, Mustofa ASH, Ariawan D, Diharjo K. Characteristics of mechanical properties of coir-fibre/rubber composite, J. Phys Conf Ser 2020; 1511(1): 012065 DOI: 10.1088/1742-6596/1511/1/012065

Kuan Y-H, Huang F-M, Lee S-S, Li Y-C, Chang Y-C Bisgma Stimulates Prostaglandin E2 Production in Macrophages via Cyclooxygenase-2, Cytosolic Phospholipase A2, and Mitogen-Activated Protein Kinases Family. PLoS ONE. 2013; 8(12): e82942. DOI: 10.1371/journal.pone.0082942

ISO 7405 Dentistry-Evaluation of biocompatibility of medical devices used in dentistry. International Organization for Standardization, Geneva. 2018.

Loreto C, La Rocca G, Anzalone R, Caltabiano R, Vespasiani G, Castorina S, Ralph DJ, et al. The role of intrinsic pathway in apoptosis activation and progression in Peyronie's disease. Biomed Res Int. 2014; 2014: 616149. DOI: 10.1155/2014/616149

Kurniawati Y. Kultur Primer Fibroblas: Penelitian Pendahuluan. Maj Ked Andalas. 2015; 38(1): 33-40. DOI: 10.22338/mka.v38.i1.p33-40.2015

Cevanti TA, Rois MF, Sari NSP, Isnaini SI, Sasono SRA, Firdaus GMB, Setyawan H, dkk. Synthesis of Cellulose Fiber from Coconut Coir as Potential Application of Dental Flowable Composite Filler. J Internat Dent Medic Res. 2022; 15(2): p, 618-22.

Dahlan M. Besar sampel dan cara pengambilan sampel dalam penelitian kedokteran dan kesehatan. Jakarta: Penerbit Salemba Medika. 2018

Chen C, Wu J, Weir MD, Wang L, Zhou X, Xu HHK, Melo MAS. Dental Composite Formulation Design with Bioactivity on Protein Adsorption Combined with Crack-Healing Capability. J Funct Biomater. 2017; 8(3): 40. DOI: 10.3390/jfb8030040

Kumar KP, Sekaran ASJ. Some Natural fibers used in polymer composites and their extraction processes : A review. J reinforced plastics & composites 2014, 2017; 33(20): p, 1879-92

Kruse CR, Singh M, Targosinski S, Sinha I, Sørensen JA, Eriksson E, Nuutila K. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study. Wound Repair and Regeneration. 2017; 25(2) :260-9. DOI: 10.1111/wrr.12526

Bayot ML, Bragg BN. Antimicrobial Susceptibility Testing. [Updated 2022 Oct 1 0]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539714/

Mulyadi I. Isolasi dan Karakterisasi Selulosa: Review. 2019; 1(2): p, 1-6.

Nurnasari E, Nurindah. Karakteristik Kimia Serat Buah, Serat Batang, dan Serat Daun Buletin Tanaman Tembakau, Serat & Minyak Industri. 2017; 9(2): 64−72. DOI: 10.21082/btsm.v9n2.2017.64-72

Arsyad M, Salam A. Analisis Pengaruh Konsentrasi Larutan Alkali Terhadap Perubahan Diameter Serat Sabut Kelapa. J INTEK. 2017; 4(1): 10-13. DOI: 10.31963/intek.v4i1.90

Salehi S, Gwinner F, Mitchell JC, Pfeifer C, Ferracane JL. Cytotoxicity of resin composites containing bioactive glass fillers. Dent Mater. 2015; 31(2): 195-203. DOI: 10.1016/j.dental.2014.12.004

Kamalak H, Kamalak A, Taghizadehghalehjoughi A, Hacımüftüoğlu A, Nalcı KA. Cytotoxic and biological effects of bulk fill composites on rat cortical neuron cells. Odontology. 2018; 106(4): 377-88. DOI: 10.1007/s10266-018-0354-5

Harahap KI, Agusnas H, Sastrodihardjo S. Perbedaan penyerapan air ke dalam resin komposit mikrohibrid dan nanohibrid setelah direndam di dalam saliva buatan. Dent Dent J. 2013;17(4): 319–323. DOI: 10.32734/dentika.v17i4.1780

Beltrami R, Colombo M, Rizzo K, Di Cristofaro A, Poggio C, Pietrocola G. Cytotoxicity of different composite resins on human gingival fibroblast cell lines. Biomimetics. 2021; 6(26): 1–8. DOI: 10.3390/biomimetics6020026

Kumar S, Lal S, Jagdeva G, Arora S, Kumar P, Soni R, et al. Performance-based natural rubber composites reinforced with jute fibers and nano-silica: thermal, morphological, and mechanical studies with statistical optimization. Iranian Polymer J. 2023; 32(5): 1-11 DOI: 10.1007/s13726-023-01148-x

Fattahi Meyabadi T, Dadashian F, Mir Mohamad Sadeghi G, Ebrahimi Zanjani Asl H. Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technology 261: 232–240. DOI: 10.1016/j.powtec.2014.04.039

Meyabadi TF, Dadashian F, Sadeghi GM. Hamid Ebrahimi Zanjani HE. Spherical cellulose nanoparticles preparation from waste cotton using a green method . Powder Technology. 2014; 261: 232–40. DOI: 10.1016/j.powtec.2014.04.039

Al-Shekhli AAR, Aubi IAl. Solubility of Nanofilled Versus Conventional Composites. Pakistan Oral Dent J. 2014; 34(1): p, 118–21.

Oroh J, Sappu FP, Lumintang R. Analisis sifat mekanik material komposit dari serat sabut kelapa. J online poros Teknik mesin unsrat; 2012;1(1):p, 1-10.

Craig RG, Powers JM. Restorative dental materials. 14th Ed. Elsevier: Mosby,. 2018.

Soares CJ, Faria-E-Silva AL, Rodrigues MP, Vilela ABF, Pfeifer CS, Tantbirojn D, Versluis A. Polymerization shrinkage stress of composite resins and resin cements - What do we need to know? Braz Oral Res. 2017; 31(suppl 1): e62. DOI: 10.1590/1807-3107BOR-2017.vol31.0062

Sakaguchi R, Ferracane J, Powers J, Craig’s Restorative Dental Materials. 14th Ed. St, Louis: Mosby. 2018: p, 90-207, 217-23.

Mittal KL, Etzler FM. Adhesion in Pharmaceutical, Biomedical and Dental Fields. 1st Ed. Wiley Global Headquarters 111 River Street, Hoboken, NJ 07030, USA. 2017.p. 1-573.

Septiwidyati TR, Auerkari E. Genotoxin effect of composite resin. Indonesian J Legal and rensic Scie 2019;1(1):8-18 DOI: 10.24843/IJLFS.2019.v09.i01.p02

Schmalz G, Galler KM. Biocompatibility of biomaterials – lessons learned and considerations for the design of novel materials. Dent Mater. 2017;33(4):382–393. DOI: 10.1016/j.dental.2017.01.011.

Ma’ruf MT, Siswomohardjo W, Saesetyo MH, Tontowi AE. Uji biokompatibilitas komposit polivinil alkohol hidroksiapatit dengan penguat catgut sebagai bahan penyambung patah tulang. J Teknosains. 2013; 3(1): 51-65. DOI: 10.22146/teknosains.6128

Harsini H, Hertama FN. Pengaruh variansi konsentrasi ekstrak kulit batang jambu mete terhadap sitotoksikitas sel fibroblas. 2017; 2(1): 6-12. DOI: 10.22146/majkedgiind.10730




DOI: https://doi.org/10.24198/pjdrs.v7i2.46092

Refbacks

  • There are currently no refbacks.


       

      

  

Statistik Pengunjung

Creative Commons License
Padjadjaran Journal of Dental Researchers and Students dilisensikan di bawah Creative Commons Attribution 4.0 International License