Karakterisasi Fisikokimia dan Stabilitas Emulsi Pickering Menggunakan Tepung dan Pati Ganyong Termodifikasi Dry-Heat sebagai Emulsifier
Abstract
Ganyong sebagai sumber karbohidrat berbasis pangan lokal berpotensi sebagai partikel penstabil emulsi pickering. Sifat tepung dan pati ganyong yang ramah lingkungan berpotensi sebagai pickering. Pemanfaatan tepung dan pati ganyong sebagai pickering masih memiliki keterbatasan pada sifat fisikokimia dan stabilitas. Penelitian ini mengamati karakteristik fisikokimia dan kestabilan tepung serta pati ganyong termodifikasi dengan metode dry heat (DH). Pengamatan dilakukan terhadap potensial zeta, sudut kontak, distribusi ukuran, indeks emulsi, indeks creaming dan kemampuan mengikat minyak: tepung dan pati ganyong termodifikasi. Hasil menunjukkan partikel tepung dan pati ganyong termodifikasi dan alami cenderung mudah teragregasi dengan ukuran partikel 1,17-1,41 µm dengan keberagaman partikel. Tepung dan pati ganyong alami, dan termodifikasi tergolong hidrofilik sudut kontak kurang dari 90o. Tepung ganyong dengan modifikasi dry heat, dan alami berpotensi sebagai emulsi pickering.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Albert, C., Beladjine, M., Tsapis, N., Fattal, E., Agnely, F., & Huang, N. (2019). Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. Journal of Controlled Release, 309, 302–332. https://doi.org/10.1016/j.jconrel.2019.07.003
Aprianita, A., Vasiljevic, T., Bannikova, A., & Kasapis, S. (2014). Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots. Journal of Food Science and Technology, 51(12), 3669–3679. https://doi.org/10.1007/s13197-012-0915-5
Barroso, N. G., Santos, M. A. S., Okuro, P. K., & Cunha, R. L. (2022). Composition and process approaches that underpin the mechanical properties of oleogels. JAOCS, Journal of the American Oil Chemists’ Society, 99(11), 971–984. https://doi.org/10.1002/aocs.12635
Berton-Carabin, C. C., & Schroën, K. (2015). Pickering Emulsions for Food Applications: Background, Trends, and Challenges. Annual Review of Food Science and Technology, 6(1), 263–297. https://doi.org/10.1146/annurev-food-081114-110822
Bhattacharjee, S. (2016). DLS and zeta potential - What they are and what they are not? Journal of Controlled Release, 235, 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017
Campos, J. M., Stamford, T. L. M., Rufino, R. D., Luna, J. M., Stamford, T. C. M., & Sarubbo, L. A. (2015). Formulation of mayonnaise with the addition of a bioemulsifier isolated from Candida utilis. Toxicology Reports, 2, 1164–1170. https://doi.org/10.1016/j.toxrep.2015.08.009
Cao, G., Du, T., Bai, Y., Yang, T., & Zuo, J. (2021). Effects of surfactant molecular structure on the stability of water in oil emulsion. Journal of Petroleum Science and Engineering, 196, 107695. https://doi.org/https://doi.org/10.1016/j.petrol.2020.107695
Choi, H.-D., Hong, J. S., Pyo, S. min, Ko, E., Shin, H.-Y., & Kim, J.-Y. (2020). Starch nanoparticles produced via acidic dry heat treatment as a stabilizer for a Pickering emulsion: Influence of the physical properties of particles. Carbohydrate Polymers, 239, 116241. https://doi.org/10.1016/j.carbpol.2020.116241
Datir, R. P., Ravindra, M. R., Manjunatha, M., & Sharma, M. (2021). Optimization of recombination of milk at different fat levels in a small volume universal disperser unit. Journal of Food Science and Technology, 58(4), 1389–1400. https://doi.org/10.1007/s13197-020-04650-9
de Carvalho-Guimarães, F. B., Correa, K. L., de Souza, T. P., Rodríguez Amado, J. R., Ribeiro-Costa, R. M., & Silva-Júnior, J. O. C. (2022). A Review of Pickering Emulsions: Perspectives and Applications. Pharmaceuticals, 15(11), 1413. https://doi.org/10.3390/ph15111413
Deng, W., Li, Y., Wu, L., & Chen, S. (2022). Pickering emulsions stabilized by polysaccharides particles and their applications: a review. Food Science and Technology, 42. https://doi.org/10.1590/fst.24722
Destribats, M., Gineste, S., Laurichesse, E., Tanner, H., Leal-Calderon, F., Héroguez, V., & Schmitt, V. (2014). Pickering Emulsions: What Are the Main Parameters Determining the Emulsion Type and Interfacial Properties? Langmuir, 30(31), 9313–9326. https://doi.org/10.1021/la501299u
El Bouchikhi, S., Pagès, P., Ibrahimi, A., & Bensouda, Y. (2021). Creaming behavior prediction of argan oil in water emulsion stabilized by lacto-fermentation: creaming index. BMC Biotechnology, 21(1), 53. https://doi.org/10.1186/s12896-021-00711-9
Ertugay, M. F., Şengül, M., & Şengül, M. (2004). Effect of ultrasound treatment on milk homogenisation and particle size distribution of fat. Turkish Journal of Veterinary and Animal Sciences, 28(2), 303–308.
Flöter, E., Wettlaufer, T., Conty, V., & Scharfe, M. (2021). Oleogels—their applicability and methods of characterization. Molecules, 26(6). https://doi.org/10.3390/molecules26061673
Ge, S., Xiong, L., Li, M., Liu, J., Yang, J., Chang, R., … Sun, Q. (2017). Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size. Food Chemistry, 234, 339–347. https://doi.org/10.1016/j.foodchem.2017.04.150
Gong, H., Song, X., Zhang, J., Zhang, B., & Zhu, W. (2022). Effects of Dry Heat Treatment on Characteristics of Hydrophobically Modified Rice Starch and its Emulsification in Pickering Emulsion. Starch - Stärke, 74(1–2), 2100131. https://doi.org/10.1002/star.202100131
Gonzalez Ortiz, D., Pochat-Bohatier, C., Cambedouzou, J., Bechelany, M., & Miele, P. (2020). Current Trends in Pickering Emulsions: Particle Morphology and Applications. Engineering, 6(4), 468–482. https://doi.org/https://doi.org/10.1016/j.eng.2019.08.017
Isnaini, L., Estiasih, T., Suseno, S. H., & Lestari, L. A. (2021). The role vegetable proteins to stabilize emulsion: A mini review. IOP Conference Series: Earth and Environmental Science, 924(1). https://doi.org/10.1088/1755-1315/924/1/012036
Juliantoni, Y., Hajrin, W., & Subaidah, W. A. (2020). Nanoparticle Formula Optimization of Juwet Seeds Extract (Syzygium cumini) using Simplex Lattice Design Method. Jurnal Biologi Tropis, 20(3), 416–422. https://doi.org/10.29303/jbt.v20i3.2124
Kierulf, A., Whaley, J., Liu, W., Enayati, M., Tan, C., Perez-Herrera, M., … Abbaspourrad, A. (2020). Protein content of amaranth and quinoa starch plays a key role in their ability as Pickering emulsifiers. Food Chemistry, 315, 126246. https://doi.org/10.1016/j.foodchem.2020.126246
Konar, N., Ozarda, O., Senocak, S., Unluturk, N. N., & Oba, S. (2019). Effects of Process Conditions on Citrus Beverage Emulsions’ Creaming Index: RSM Approach. ETP International Journal of Food Engineering, 5(1), 22–27. https://doi.org/10.18178/ijfe.5.1.22-27
Lee, H., & Park, I. (2020). The Influence of Starch Modification with Amylosucrase Treatment on Morphological Features. Processes, 8(11), 1409. https://doi.org/10.3390/pr8111409
Li, C., Li, Y., Sun, P., & Yang, C. (2013). Pickering emulsions stabilized by native starch granules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 431, 142–149. https://doi.org/10.1016/j.colsurfa.2013.04.025
Li, S., Li, C., Yang, Y., He, X., Zhang, B., Fu, X., … Huang, Q. (2019). Starch granules as Pickering emulsifiers: Role of octenylsuccinylation and particle size. Food Chemistry, 283, 437–444. https://doi.org/10.1016/j.foodchem.2019.01.020
McClements, D. J. (2015). Food Emulsions. CRC Press. https://doi.org/10.1201/b18868
Mosca, M., Cuomo, F., Lopez, F., & Ceglie, A. (2013). Role of emulsifier layer, antioxidants and radical initiators in the oxidation of olive oil-in-water emulsions. Food Research International, 50(1), 377–383. https://doi.org/10.1016/j.foodres.2012.10.046
Myhrstad, M. C. W., Slydahl, M., Hellmann, M., Garnweidner-Holme, L., Lundin, K. E. A., Henriksen, C., & Telle-Hansen, V. H. (2021). Nutritional quality and costs of gluten-free products: A case-control study of food products on the norwegian marked. Food and Nutrition Research, 65(November 2020), 1–10. https://doi.org/10.29219/fnr.v65.6121
Nawaz, H., Akbar, A., Andaleeb, H., Shah, M., Amjad, A., Mehmood, A., & Mannan, R. (2020). Microwave-Induced Modification in Physical and Functional Characteristics and Antioxidant Potential of Nelumbo nucifera Rhizome Starch. Journal of Polymers and the Environment. https://doi.org/10.1007/s10924-020-01828-2
Nugraheni, M., Lastariwati, B., & Purwanti, S. (2018). The Potential Of Gluten Free Flour Enriched With Resistant Starch Type 3 From Canna Edulis For The Management Profile Of Glucose, Lipids And Short Chain Fatty Acid In Healthy Mice. 112(Iconhomecs 2017), 120–124. https://doi.org/10.2991/iconhomecs-17.2018.29
Nugroho, B. H., & Sari, N. P. (2018). Fomulasi Self Nano Emulsifiying Drug Delivery System (SNEDDS) Ekstrak Daun Karamunting (Rhodomyrtus tomentosa (Ait.) Hassk). Jurnal Ilmiah Farmasi, 14(1), 1–8. https://doi.org/10.20885/jif.vol14.iss1.art1
Palazolo, G. G., Sobral, P. A., & Wagner, J. R. (2011). Freeze-thaw stability of oil-in-water emulsions prepared with native and thermally-denatured soybean isolates. Food Hydrocolloids, 25(3), 398–409. https://doi.org/10.1016/j.foodhyd.2010.07.008
Rahn-Chique, K., & Urbina-Villalba, G. (2017). Dependence of emulsion stability on particle size: Relative importance of drop concentration and destabilization rate on the half lifetimes of O/W nanoemulsions. Journal of Dispersion Science and Technology, 38(2), 167–179. https://doi.org/10.1080/01932691.2016.1149715
Ravera, F., Dziza, K., Santini, E., Cristofolini, L., & Liggieri, L. (2021). Emulsification and emulsion stability: The role of the interfacial properties. Advances in Colloid and Interface Science, 288, 102344. https://doi.org/10.1016/j.cis.2020.102344
Rawal, K., Annamalai, P. K., Bhandari, B., & Prakash, S. (2023). Oat flour as a novel stabiliser for designing plant-based Pickering emulsion. Journal of Food Engineering, 340, 111300. https://doi.org/10.1016/j.jfoodeng.2022.111300
Rayner, M., Timgren, A., Sjöö, M., & Dejmek, P. (2012). Quinoa starch granules: a candidate for stabilising food-grade Pickering emulsions. Journal of the Science of Food and Agriculture, 92(9), 1841–1847. https://doi.org/10.1002/jsfa.5610
Saari, H., Heravifar, K., Rayner, M., Wahlgren, M., & Sjöö, M. (2019). Preparation and Characterization of Starch Particles for Use in Pickering Emulsions. Cereal Chemistry, 93(2), 1–35.
Salimi, A., Javan, A. J., & Rostamzad, H. (2021). Quality and Stability of Emulsions Made of Whey Protein , Soy Protein , Arabic Gum , and Maltodextrin. J Nutr Fast Health., 9(4), 312–320. https://doi.org/10.22038/JNFH.2021.
Salimi, A., Maghsoudlou, Y., Jafari, S. M., Mahounak, A. S., nejad, M. K., & Ziaiifar, A. M. (2017). Stabilizing O/W Emulsions by Soy Protein Concentrate + Maltodextrin and Optimizing the Process by Using Response Surface Methodology. Food Science and Technology, 5(5), 97–105. https://doi.org/10.13189/fst.2017.050501
Su, G., Cui, C., Ren, J., Yang, B., & Zhao, M. (2011). Effect of xylose on the molecular and particle size distribution of peanut hydrolysate in Maillard reaction system. Journal of the Science of Food and Agriculture, 91(13), 2457–2462. https://doi.org/10.1002/jsfa.4487
Sun, H., Fan, J., Sun, H., Jiang, G., Meng, Y., Zeng, X., … Liu, X. (2022). Study on Protein Structures of Eight Mung Bean Varieties and Freeze-Thaw Stability of Protein-Stabilized Emulsions. Foods, 11(21), 1–19. https://doi.org/10.3390/foods11213343
van den Berg, M. E. H., Kuster, S., Windhab, E. J., Adamcik, J., Mezzenga, R., Geue, T., … Fischer, P. (2018). Modifying the Contact Angle of Anisotropic Cellulose Nanocrystals: Effect on Interfacial Rheology and Structure. Langmuir, 34(37), 10932–10942. https://doi.org/10.1021/acs.langmuir.8b00623
Wang, J., Zhang, K., Zhang, L., Song, Z., Shang, S., Liu, H., & Wang, D. (2022). Preparation and stabilization of Pickering emulsions by cationic cellulose nanocrystals synthesized from deep eutectic solvent. International Journal of Biological Macromolecules, 209, 1900–1913. https://doi.org/10.1016/j.ijbiomac.2022.04.164
Wu, J., & Ma, G.-H. (2016). Recent Studies of Pickering Emulsions: Particles Make the Difference. Small, 12(34), 4633–4648. https://doi.org/10.1002/smll.201600877
Xiao, X. L., Yussof, N. S., Mat Lazim, A., & Uthumporn Utra. (2020). Modified tuber starches as potential stabilizer for food-grade Pickering emulsions. Food Research, 4(3), 753–763. https://doi.org/10.26656/fr.2017.4(3).351
Xie, Y., Liu, R., Zhang, C., Liu, D., & Han, J. (2022). Structural Characteristics and Emulsifying Properties of Soy Protein Isolate Glycated with Galacto-Oligosaccharides under High-Pressure Homogenization. Foods, 11(21). https://doi.org/10.3390/foods11213505
Yang, Y., Fang, Z., Chen, X., Zhang, W., Xie, Y., Chen, Y., … Yuan, W. (2017). An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications . Frontiers in Pharmacology , Vol. 8. Retrieved from https://www.frontiersin.org/articles/10.3389/fphar.2017.00287
Yu, Z.-Y., Jiang, S.-W., Zheng, Z., Cao, X.-M., Hou, Z.-G., Xu, J.-J., … Pan, L.-J. (2019). Preparation and properties of OSA-modified taro starches and their application for stabilizing Pickering emulsions. International Journal of Biological Macromolecules, 137, 277–285. https://doi.org/10.1016/j.ijbiomac.2019.06.230
Zayas, J. F. (1997). Emulsifying Properties of Proteins. In Functionality of Proteins in Food. Springer-Verlag Berlin Heidelberg.
Zhai, K., Pei, X., Wang, C., Deng, Y., Tan, Y., Bai, Y., … Wang, P. (2019). Water-in-oil Pickering emulsion polymerization of N-isopropyl acrylamide using starch-based nanoparticles as emulsifier. International Journal of Biological Macromolecules, 131, 1032–1037. https://doi.org/10.1016/j.ijbiomac.2019.03.107
Zhang, L., Xiong, T., Wang, X.-F., Chen, D.-L., He, X.-D., Zhang, C., … Qian, J.-Y. (2021). Pickering emulsifiers based on enzymatically modified quinoa starches: Preparation, microstructures, hydrophilic property and emulsifying property. International Journal of Biological Macromolecules, 190, 130–140. https://doi.org/10.1016/j.ijbiomac.2021.08.212
Zhang, T., Ding, M., Wang, X., & Zhong, J. (2020). Droplet and creaming stability of fish oil-loaded gelatin/surfactant-stabilized emulsions depends on both the adsorption ways of emulsifiers and the adjusted pH. Food Science and Human Wellness, 9(3), 280–288. https://doi.org/10.1016/j.fshw.2020.04.002
Zhu, P., Du, X., Liu, C., Zhao, G., & Wang, M. (2023). Effects of pH during dry-heat preparation on the physicochemical and emulsifying properties of rice starch and whey protein isolate mixtures. Food Hydrocolloids, 140, 108614. https://doi.org/10.1016/j.foodhyd.2023.108614
DOI: https://doi.org/10.24198/jt.vol17n3.3
Refbacks
- There are currently no refbacks.
Indexed by:

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY-SA 4.0)