Dewaxing Effects on Cellulose Isolation from Waste of Red Algae and Brown Algae

Hasna Nur Afifah, ‎ Hidayat, Selly Harnesa Putri

Abstrak


Cellulose is a useful material with good biodegradibility and can be easily found in both terrestrial and marine biomass. Algae, as lignosellulosic biomass, have several advantages compared to terrestrial biomass, such as easier growth, faster harvest time, and lower lignin content. The agar and alginate production industry impacting the amount of its waste. The waste produced has not been used optimally even though it still has cellulose content. Red algae Gracilaria verrucosa and brown algae Sargassum sp. are the main source of agar and alginate production. Agricultural waste from both algae is used for cellulose production through two main processes: delignification and bleaching. Effects of dewaxing as a pre-treatment process on the produced cellulose was tested. The aim of this study is to determine the difference between dewaxed and non-dewaxed cellulose. The results show that dewaxed cellulose on both sources of algae obtained a higher yield but has no significant difference in FTIR spectra composition. Sargassum sp. cellulose has a broader and weaker FTIR spectra compared to Gracilaria verrucosa cellulose. In addition, the appearance of dewaxed cellulose is brighter than non-dewaxed cellulose from Gracilaria verrucosa, while there is no significant difference in color between dewaxed and non-dewaxed cellulose from Sargassum sp..


Teks Lengkap:

PDF

Referensi


BPS, “Hasil Survei Komoditas Perikanan Potensi Rumput Laut 2021 Seri 2,” 2022.

KKP, “Dukung Ekonomi Biru, KKP Dorong Riset Olahan Rumput Laut Nirlimbah,” Badan Riset dan Sumber Daya Manusia Kelautan dan Perikanan, 2021. [Online]. Available: https://kkp.go.id/djpdspkp/page/2202-realisasi-investasi-sektor-kelautan-dan-perikanan.

Mustaqim, A. Farid, and Nurjanah, “Pengolahan Limbah Rumput Laut sebagai Alternatif Pakan Ternak dan Ikan,” J. Bid. Tek., vol. 5, no. 1, pp. 1–7, 2014.

Y. W. Chen, H. V. Lee, J. C. Juan, and S. M. Phang, “Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans,” Carbohydr. Polym., vol. 151, pp. 1210–1219, 2016, doi: 10.1016/j.carbpol.2016.06.083.

R. A. Ilyas and M. S. N. Atikah, “Production of nanocellulose from sustainable algae marine biomass,” Semin. Adv. Bio- Miner. based Nat. Fibre Compos., no. January, pp. 1–9, 2021.

A. Wadi et al., “Production of Bioethanol from Seaweed Gracilaria verrucosa and Eucheuma cottonii by Simultaneous Saccharification and Fermentation,” J. Phys. Conf. Ser., vol. 1341, pp. 1–9, 2019, doi: 10.1088/1742-6596/1341/3/032031.

K. J. Azcorra-May et al., “Sargassum delignification: a first step to mitigate the socio-economic and environmental impacts in the Caribbean through its sustainable exploitation,” Biomass Convers. Biorefinery, no. 0123456789, 2023, doi: 10.1007/s13399-023-05158-w.

A. Husni, Subaryono, Y. Pranoto, Tazwir, and Ustadi, “Pengembangan Metode Ekstraksi Alginat dari Rumput Laut Sargassum sp. sebagai Bahan Pengental,” Agritech, vol. 32, no. 1, pp. 1–8, 2012.

W. K. Yunita, W. Sarengat, and E. Suprijatna, “Penggunaan Tepung Limbah Rumput Laut (Gracilaria verrucosa) Terfermentasi dalam Ransum terhadap Performans Puyuh Petelur (Coturnix coturnix japonica),” Anim. Agric. J., vol. 4, no. 1, pp. 121–126, 2015.

M. Zaki et al., “Microbial treatment for nanocellulose extraction from marine algae and its applications as sustainable functional material,” Bioresour. Technol. Reports, vol. 16, no. September, p. 100811, 2021, doi: 10.1016/j.biteb.2021.100811.

R. S. Baghel, C. R. K. Reddy, and R. P. Singh, “Seaweed-based cellulose: Applications, and future perspectives,” Carbohydr. Polym., vol. 267, no. March, p. 118241, 2021, doi: 10.1016/j.carbpol.2021.118241.

Y. Liu et al., “Trends in Food Science & Technology A review of cellulose and its derivatives in biopolymer-based for food packaging application,” Trends Food Sci. Technol., vol. 112, no. November 2020, pp. 532–546, 2021, doi: 10.1016/j.tifs.2021.04.016.

H. Seddiqi, E. Oliaei, H. Honarkar, and J. Jin, Cellulose and its derivatives : towards biomedical applications, vol. 28, no. 4. Springer Netherlands, 2021.

Z. Wang, Y. Lee, S. Kim, J. Seo, S. Lee, and L. Nyholm, “Why Cellulose-Based Electrochemical Energy Storage Devices ?,” vol. 2000892, pp. 1–18, 2020, doi: 10.1002/adma.202000892.

O. G. Paniz et al., “Cellulosic material obtained from Antarctic algae biomass,” Cellulose, vol. 27, no. 1, pp. 113–126, 2020, doi: 10.1007/s10570-019-02794-2.

M. El Achaby, Z. Kassab, A. Aboulkas, C. Gaillard, and A. Barakat, “Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites,” Int. J. Biol. Macromol., vol. 106, pp. 681–691, 2018, doi: 10.1016/j.ijbiomac.2017.08.067.

N. Salamah and E. Widyasari, “Aktivitas Antioksidan Ekstrak Metanol Daun Kelengkeng (Euphoria longan (L) Steud.) dengan Metode Penangkapan Radikal 2,2’-Difenil-1-Pikrihidrazil,” Pharmaciana, vol. 5, no. 1, pp. 25–34, 2015.

A. Munajad, C. Subroto, and Suwarno, “Fourier Transform Infrared ( FTIR ) Spectroscopy Analysis of Transformer Paper in Mineral Oil-Paper Composite Insulation under Accelerated,” Energies, vol. 11, no. 364, pp. 1–12, 2018, doi: 10.3390/en11020364.

D. Trache et al., Nanocellulose: From Fundamentals to Advanced Applications, vol. 8, no. May. 2020.

S. Behera, R. Arora, N. Nandhagopal, and S. Kumar, “Importance of chemical pretreatment for bioconversion of lignocellulosic biomass,” Renew. Sustain. Energy Rev., vol. 36, pp. 91–106, 2014, doi: 10.1016/j.rser.2014.04.047.

H. Rabemanolontsoa and S. Saka, “Various Pretreatments of Lignocellulosics,” Bioresour. Technol., no. August, 2015, doi: 10.1016/j.biortech.2015.08.029.

R. E. Brooks and S. B. Moore, “Alkaline hydrogen peroxide bleaching of cellulose,” pp. 263–286, 2000.

R. Suriyatem et al., “Physical Properties of Carboxymethyl Cellulose from Palm Bunch and Bagasse Agricultural Wastes : E ff ect of Delignification with Hydrogen Peroxide,” Polymers (Basel)., vol. 12, no. 1505, pp. 1–16, 2020.

S. I. Mussatto, G. J. M. Rocha, and I. C. Roberto, “Hydrogen peroxide bleaching of cellulose pulps obtained from brewer ’ s spent grain,” Cellulose, vol. 15, pp. 641–649, 2008, doi: 10.1007/s10570-008-9198-4.

H. Doh, M. H. Lee, W. S. Whiteside, H. Doh, M. Hyeock, and W. Scott, “Physicochemical Characteristics of Cellulose Nanocrystals Isolated From Seaweed Biomass,” Food Hydrocoll., vol. 102, 2019, doi: 10.1016/j.foodhyd.2019.105542.

R. S. Baghel, P. Suthar, T. K. Gajaria, S. Bhattacharya, A. Anil, and C. R. K. Reddy, “Seaweed biore fi nery : A sustainable process for valorising the biomass of brown seaweed,” J. Clean. Prod., vol. 263, p. 121359, 2020, doi: 10.1016/j.jclepro.2020.121359.

V. Jonjaroen, S. Ummartyotin, and S. Chittapun, “Algal cellulose as a reinforcement in rigid polyurethane foam,” Algal Res., vol. 51, no. August, p. 102057, 2020, doi: 10.1016/j.algal.2020.102057.

J. K. Kurian, Y. Gariepy, V. Orsat, and G. S. V. Raghavan, “Microwave-assisted lime treatment and recovery of lignin from hydrothermally treated sweet sorghum bagasse,” Biofuels, vol. 6, no. 5–6, pp. 341–355, 2015, doi: 10.1080/17597269.2015.1110775.


Refbacks

  • Saat ini tidak ada refbacks.