Pengaruh Penambahan Nanopartikel ZnO Terhadap Morfologi Nanokomposit TiO2/ZnO
Abstract
Full Text:
PDF (Bahasa Indonesia)References
Qazi, F. Hussain, N. Abd. Rahim, G. Hardaker, D. Alghazzawi, K. Shaban, and K. Haruna, Towards Sustainable Energy: A Systematic Review Of Renewable Energy Sources, Technologies, And Public Opinions, Ieee Access, Vol. 7 (2019), p. 63837-63851.
T. C. Wei, J. L. Lan, C. C. Wan, W. C. Hsu, and Y. H. Chang, Fabrication of grid type dye sensitized solar modules with 7% conversion efficiency by utilizing commercially available materials, Progress in Photovoltaics: Research and Applications, Vol. 21, Np.8 (2012), p. 1625–1633.
M. Pan, N. Huang, X. Zhao, J. Fu, and X. Zhong, Enhanced Efficiency of Dye-Sensitized Solar Cell by High Surface Area Anatase-TiO2-Modified P25 Paste, Journal of Nanomaterials, Volume 2013, Article ID 760685 (2013).
H. Yu, S. Zhang, H. Zhao, B. Xue, P. Liu, and G. Will, High-Performance TiO2 Photoanode with an Efficient Electron Transport Network forDye-Sensitized Solar Cells, J. Phys. Chem. C, Vol 113 (2009), p. 16277–16282.
M. S. Ahmad, A.K. Pandeya, N. Abd. Rahima, Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review, Renewable and Sustainable Energy Reviews, Vol. 77 (2017), p. 89–108.
S. Khatijah, A. Umar, S. Nafisah, S. Tan, A. Balouch, M. Shalleh, M. Oyama, Poriferous Microtablet Of Anatase TiO2 Growth on an ITO Surface For High-Efficiency Dye Sensitizedsolar Cells, Solar Energy Materials and Solar Cells, Vol. 122 (2014), p. 174-182.
M. Zi, M. Zhu, L. Chen, H. Wei, X. Yang, and B. Cao, ZnO photoanodes with different morphologies grown by electrochemical deposition and their dye-sensitized solar cell properties, Ceramics International, Vol 40, No. 6 (2014), p. 7965–7970.
K. Basu, D. Benetti, H. Zhao, et al. Enhanced photovoltaic properties in dye sensitized solar cells by surface treatment of SnO2 photoanodes. Sci Rep Vol. 6 (2016), p. 23312.
H. Yoon, D. Kim, M. Park, J. Kim, J. Kim, W. Srituravanich, B. Shin, Y. Jung, and S. Jeon, Extraordinary Enhancement of UV Absorption in TiO2 Nanoparticles Enabled by Low-Oxidized Graphene Nanodots, J. Phys. Chem. C, Vol. 122, No. 22 (2018), p. 12114–12121.
S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. Curchod, N. Ashari-Astani, et al., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat. Chem., Vol 6 (2014), p. 242–247.
M. Belarb, B. Benyoucef, A. Benyoucef, T. Benouaz, S. Goumri-Said, Enhanced electrical model for dye-sensitized solar cell characterization, Sol. Energy, Vol. 122 (2015), p. 700–711.
Y. F. Wang, W. X. Zhao, X. F. Li, D. J. Li, Engineered interfacial and configuration design of double layered SnO2@TiO2–ZnO nanoplates ternary heterostructures for efficient dye-sensitized solar cells. Electrochim. Acta, Vol. 151 (2015), p. 399–406.
Y. Feng, Ji. Chen, X. Huang, W. Liu, Y. Zhu, W. Qin, and X. Mo, A ZnO/TiO2 composite nanorods photoanode with improved performance for dye-sensitized solar cells, Cryst. Res. Technol., Vol 51, Issue 10 (2016), p. 548-553.
J. Han, F. Fan, C. Xu, S. Lin, M. Wei, X. Duan, Z. L. Wang, ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices, Nanotechnology, Vol. 21 (2010), p. 405203.
M. A. Eric, Synthesis and Growth of ZnO Nanoparticles, J. Phys. Chem. B, Vol. 102 (1998), p. 5566-5572.
L. Safriani, A. Aprilia, A. Bahtiar, Risdiana, M. Kartawidjaja, T. Apriani, K. Kanazawa, and Y. Furukawa, Preparation of ZnO nanoparticles for blend of P3HT:ZnO nanoparticles:PCBM thin film and its charge carrier dynamics characterization, AIP Conference Proceedings, Vol. 1554 (2013), p. 101-104.
DOI: https://doi.org/10.24198/jiif.v6i2.41201
Refbacks
- There are currently no refbacks.





